
www.manaraa.com

Wayne State University

Wayne State University Dissertations

1-1-2016

Synthesis, Characterization, And Properties Of
Peroxo-Based Oxygen-Rich Compounds For
Potential Use As Greener High Energy Density
Materials
Nipuni-Dhanesha Horadugoda Gamage
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Oil, Gas, and Energy Commons, and the Organic Chemistry Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Gamage, Nipuni-Dhanesha Horadugoda, "Synthesis, Characterization, And Properties Of Peroxo-Based Oxygen-Rich Compounds
For Potential Use As Greener High Energy Density Materials" (2016). Wayne State University Dissertations. Paper 1372.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1372&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1372&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1372&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1372&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1372&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1372&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1372?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1372&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

 

 

SYNTHESIS, CHARACTERIZATION, AND PROPERTIES OF PEROXO-BASED 
OXYGEN-RICH COMPOUNDS FOR POTENTIAL USE AS GREENER HIGH ENERGY 

DENSITY MATERIALS 
 

by 

NIPUNI-DHANESHA HORADUGODA GAMAGE 

DISSERTATION 

Submitted to the Graduate School 

of Wayne State University,  

Detroit, Michigan 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

      2015 

MAJOR: CHEMISTRY (Inorganic) 

Approved By:  

  
Advisor   Date 
 

 
 
 

 
 

 

 
 
 
 
 
 
 



www.manaraa.com

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© COPYRIGHT BY 

NIPUNI-DHANESHA HORADUGODA GAMAGE 

2015 

All Rights Reserved 

 

 
 
 
 
 
 



www.manaraa.com

ii 
 

DEDICATION 

To my parents, husband, and son  

The people who have always supported me, helped me to rise up whenever I fell, and 

encouraged and inspired me to accomplish my goals. 

  



www.manaraa.com

iii 
 

ACKNOWLEDGMENTS 

 I would like to express my sincere gratitude to Professor Charles H. Winter for 

taking me into Winter lab, which was similar to a second home for me throughout the 

phD program. His guidance and support as my advisor at Wayne State University 

allowed me to progress rapidly and successfully.  I have obtained numerous synthetic, 

technical, writing, and presentation skills that are invaluable for my future career while I 

was in Winter lab. I am also indebted to Professor Charles H. Winter for the confidence 

that he built in me to push forward by encouraging me all throughout.  

 I am extremely grateful for the wonderful collaboration we had with Prof. Thomas 

M. Klapötke, Ludwig-Maximilians University, Munich, Germany. The syntheses and 

standard sensitivity measurements carried out by Benedikt Stiasny and the energetic 

performance calculations carried out by Dr. Jörg Stierstorfer have completed the 

research study of peroxo-based compounds for my PhD. I greatly appreciate their hard 

work and time spent on research, discussions via e-mail, and preparation of 

manuscripts. 

 I am grateful to my committee members, Prof. James H. Rigby, Dr. Stanislav 

Groysman, and Dr. Charles L. Dezelah, for their valuable comments and suggestions 

on my dissertation. I thank Dr. Stanislav Groysman also for allowing me to use the IR 

spectrometer in his lab. 

 It was a great pleasure to work with the crystallography expert Dr. Philip D. 

Martin as he was extremely nice to me whenever I brought down a crystal to place in 

the diffractometer. I am grateful for all the X-ray crystal structures he solved and for his 

assistance with cif files in the preparation of manuscripts. I would also like to thank Dr. 



www.manaraa.com

iv 
 

Bashar Ksebati and Dr. Yuriy Danylyuk for assisting me with NMR and mass 

spectrometry, respectively. I am thankful to Nestor Ocampo for his support on software 

or hardware issues. I appreciate the assistance of the science stores and the non-

academic staff members in various ways throughout the PhD program. 

 I would like to pay my gratitude to the past and present Winter lab members who 

were there while I was in the PhD program for the friendly working environment. I was 

happy to get involved in all the long chemistry discussions we had, especially with 

Joseph P. Klesko. Groysman, Brock, and Verani lab members were also always willing 

to assist me whenever I was in need and I am sincerely grateful for all of their support 

and friendship. 

 I am extremely fortunate to have two wonderful parents who have dedicated their 

life for me and my siblings and I am unable to express my gratitude in words for all they 

have done for me. I am what I am today because of my loving parents. My husband, G. 

H. Layan Savithra has been the man in my life who protected, cared for, and supported 

me for more than a decade. The B.S. special degree program in chemistry of University 

of Colombo was an intense program that brought us together and we were able to push 

through the hard work ending up as the two top students of our batch. Not only had I 

learned to love chemistry, but also my path towards PhD in chemistry was opened up 

because of Layan who was an extremely talented student. I am extremely grateful for all 

he has done. Last but not least my son, Senuk Y. Savithra is the greatest inspiration I 

have that keeps me pushing forward no matter what comes in the way. 

 

 



www.manaraa.com

v 
 

TABLE OF CONTENTS 

DEDICATION .................................................................................................................ii 

ACKNOWLEDGMENTS ............................................................................................... iii 

LIST OF TABLES ....................................................................................................... viii 

LIST OF FIGURES........................................................................................................xi 

LIST OF SCHEMES .................................................................................................... xvi 

LIST OF ABBREVIATIONS ....................................................................................... xvii 

CHAPTER 1 – Introduction ......................................................................................... 1 

1.1 High Energy Density Materials (HEDMs) ................................................. 1 

1.2 Deflagration and Detonation .................................................................... 5 

1.3 Design of HEDMs .................................................................................... 7 

1.4 Sensitivity and Energetic Performance Tests and Calculations ............. 12 

1.5 Peroxo-Based Oxygen-Rich Compounds for Use as Greener HEDMs .. 15 

1.6 Thesis Problem ...................................................................................... 37 

CHAPTER 2 – Synthesis, Characterization, and Study of the Sensitivities and 

Energetic Properties of tert-Butyl Peroxides..................................... 39 

2.1 Introduction ............................................................................................ 39 

2.2 Results and Discussion .......................................................................... 42 

2.3 Conclusion ............................................................................................. 59 

2.4 Experimental Section ............................................................................. 60 

CHAPTER 3 – Synthesis, Characterization, and Study of Surprisingly Highly 

Energetic and Low Sensitivity tert-Butyl Peroxy Esters with Low 

Oxygen and Nitrogen Contents ............................................................ 69 



www.manaraa.com

vi 
 

3.1 Introduction ............................................................................................ 69 

3.2 Results and Discussion .......................................................................... 72 

3.3 Conclusion ............................................................................................. 99 

3.4 Experimental Section ............................................................................ 100 

CHAPTER 4 – Synthesis, Characterization, and Study of Oxygen-Rich Geminal 

Hydroperoxides with Impressive Detonation Performances and 

Practically Useful Sensitivities ........................................................... 108 

 4.1 Introduction ........................................................................................... 108 

4.2 Results and Discussion ......................................................................... 111 

4.3 Conclusion ............................................................................................ 136 

4.4 Experimental Section ............................................................................ 137 

CHAPTER 5 − Tuning the Impact and Friction Sensitivities and Energetic 

Performances of a Series of Well-Characterized Cyclic 

Hydroperoxy Compounds ................................................................... 148 

 5.1 Introduction ........................................................................................... 148 

5.2 Results and Discussion ......................................................................... 152 

5.3 Conclusion ............................................................................................ 190 

5.4 Experimental Section ............................................................................ 191 

CHAPTER 6 − Synthesis, Characterization, and Study of Highly Energetic 

Peroxy Acids with Surprisingly Low Impact and Friction 

Sensitivities ............................................................................................ 201  

 6.1 Introduction ........................................................................................... 201 

6.2 Results and Discussion ......................................................................... 204 



www.manaraa.com

vii 
 

6.3 Conclusion ............................................................................................ 225 

6.4 Experimental Section ............................................................................ 227 

CHAPTER 7 – Conclusions and Future Directions ............................................... 231 

REFERENCES .......................................................................................................... 242 

ABSTRACT .............................................................................................................. 260 

AUTOBIOGRAPHICAL STATEMENT ...................................................................... 264 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

viii 
 

LIST OF TABLES 

Table 1.  Energetic properties of common primary explosives ...................................... 3 

Table 2.  Energetic properties of common secondary explosives ................................. 4 

Table 3.  Sensitivities and energetic properties of TATP ............................................ 22 

Table 4.  Sensitivities and energetic properties of DADP ............................................ 25 

Table 5.  Sensitivities and energetic properties of HMTD ........................................... 27 

Table 6.  Sensitivities and calculated energetic properties of MEKP .......................... 29 

Table 7.  Oxygen balance values of peroxo-based explosives ................................... 36 

Table 8.  Experimental crystallographic data of 1, 3, 5, 8, 11, 13, and 15 .................. 46 

Table 9.  Selected bond lengths (Å) of 1, 3, 5, 8, 11, 13, and 15 ............................... 54 

Table 10.  The list of short contacts of 1, 3, 5, 8, 11, 13, and 15 ................................ 55 

Table 11.  Decomposition temperatures of 1–15 ........................................................ 58 

Table 12.  Experimental crystallographic data of 16–18, 19·hexane, and 20–22 ....... 76 

Table 13.  The O–O, C=O, and N–O bond lengths (Å) of 16–18, 19·hexane, and 

20–22 ...................................................................................................... 84 

Table 14.  The C(O)–O, C–O, and C–N bond lengths (Å) of 16–18, 19·hexane, and 

20–22 ...................................................................................................... 85 

Table 15.  The list of short contacts of 16, 17, 18, and 19·hexane ............................. 86 

Table 16.  The list of short contacts of 20 ................................................................... 87 

Table 17.  The list of short contacts of 21 and 22 ....................................................... 88 

Table 18.  Decomposition temperatures and heats of formation values of 16–22 ...... 93 

Table 19.  Flame and Tesla coil test results for 16–22................................................ 94 

Table 20.  Impact, friction, and electrostatic discharge sensitivities of 16–22 ............. 96 

Table 21.  Calculated energetic properties of 16–22 .................................................. 98 



www.manaraa.com

ix 
 

Table 22.  Experimental crystallographic data of 24, 26, 27, 29, 30, 34·diethyl 

ether, and 36 ......................................................................................... 115 

Table 23.  The selected bond lengths (Å) of 24, 26, 27, 29, 30, 34·diethyl ether, 

and 36 ................................................................................................... 123 

Table 24.  The list of short contacts of 24, 26, and 27 .............................................. 124 

Table 25.  The list of short contacts of 29 ................................................................. 125 

Table 26.  The list of short contacts of 30 and 36 ..................................................... 126 

Table 27.  Decomposition temperatures of 23–38 .................................................... 131 

Table 28.  Heats of formation values of 34–36 and 38.............................................. 132 

Table 29.  Impact, friction, and electrostatic discharge sensitivities of 34–36                 

and 38 ................................................................................................... 133 

Table 30.  Calculated energetic properties of 34–36 and 38 ..................................... 135 

Table 31.  Experimental crystallographic data of 39–43 ........................................... 159 

Table 32.  Experimental crystallographic data of 45–48 ........................................... 160 

Table 33.  The selected bond lengths (Å) and angles (°) of 39–43 ........................... 170 

Table 34.  The selected bond lengths (Å) and angles (°) of 45–48 ........................... 171 

Table 35.  The list of short contacts of 39 and 40 ..................................................... 172 

Table 36.  The list of short contacts of 41–43 ........................................................... 173 

Table 37.  The list of short contacts of 45 and 46 ..................................................... 174 

Table 38.  The list of short contacts of 47 and 48 ..................................................... 175 

Table 39.  Decomposition temperatures and heats of formation values of 39–43 .... 181 

Table 40.  Decomposition temperatures and heats of formation values of 44–48 .... 182 

Table 41.  Impact, friction, and electrostatic discharge sensitivities of 39–43 ........... 184 



www.manaraa.com

x 
 

Table 42.  Impact, friction, and electrostatic discharge sensitivities of 44–48 ........... 184 

Table 43.  Calculated energetic properties of 39–43 ................................................ 188 

Table 44.  Calculated energetic properties of 45–48 ................................................ 189 

Table 45.  Experimental crystallographic data of 49·DMF and 52 ............................ 208 

Table 46.  The selected bond lengths (Å) and angles (°) of 49·DMF and 52 ............ 211 

Table 47.  The list of hydrogen bonds and short contacts of 52 ................................ 212 

Table 48.  Decomposition temperatures and heats of formation values of 49–53 .... 219 

Table 49.  Impact, friction, and electrostatic discharge sensitivities of 49–52 .......... 221 

Table 50.  Calculated energetic properties of 49–53 ................................................ 224 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

xi 
 

LIST OF FIGURES 

Figure 1.  Structure of nitroglycerin............................................................................... 1 

Figure 2.  Common primary explosives ........................................................................ 3 

Figure 3.  Common secondary explosives .................................................................... 4 

Figure 4.  Detonation as a stepwise material decomposition process .......................... 6 

Figure 5.  Preliminary qualitative sensitivity tests …………………. ............................ 12 

Figure 6.  Well-characterized peroxo-based oxygen-rich explosives…………………. 15 

Figure 7.  Benzoyl peroxide. ....................................................................................... 16 

Figure 8.  Peroxide subclasses based on structure. ................................................... 17 

Figure 9.  GHS hazard pictogram for organic peroxides. ............................................ 18 

Figure 10.  Peroxo-based compounds with high O:C ratios ........................................... 30 

Figure 11.  Structure of TATB. .................................................................................... 33 

Figure 12.  Categories of peroxo-based compounds for HEDM design ..................... 35 

Figure 13.  Di-tert-butyl peroxide ................................................................................ 40 

Figure 14.  The series of tert-butyl peroxides 1–15 .................................................... 41 

Figure 15.  Perspective view of 1 with thermal ellipsoids at the 50% probability 

level…………………. ............................................................................... 47 

Figure 16.  Perspective view of 3 with thermal ellipsoids at the 50% probability 

level…………………. ............................................................................... 48 

Figure 17.  Perspective view of 5 with thermal ellipsoids at the 50% probability 

level…………………. ............................................................................... 49 

Figure 18.  Perspective view of 8 with thermal ellipsoids at the 50% probability 

level…………………. ............................................................................... 50 



www.manaraa.com

xii 
 

Figure 19.  Perspective view of 11 with thermal ellipsoids at the 50% probability 

level…………………. ............................................................................... 51 

Figure 20.  Perspective view of 13 with thermal ellipsoids at the 50% probability 

level…………………. ............................................................................... 52 

Figure 21.  Perspective view of 15 with thermal ellipsoids at the 50% probability 

level…………………. ............................................................................... 53 

Figure 22.  Representative TGA (blue) and DTA (red) curves for 1…………………. . 57 

Figure 23.  Representative TGA (blue) and DTA (red) curves for 15 ......................... 57 

Figure 24.  The series of tert-butyl peroxy esters 16–22 ............................................ 71 

Figure 25.  Perspective view of 16 with thermal ellipsoids at the 50% probability       

level …………………. .............................................................................. 77 

Figure 26.  Perspective view of 17 with thermal ellipsoids at the 50% probability       

level …………………. .............................................................................. 78 

Figure 27.  Perspective view of 18 with thermal ellipsoids at the 50% probability       

level …………………. .............................................................................. 79 

Figure 28.  Perspective view of 19·hexane with thermal ellipsoids at the 50% 

probability level …………………. ............................................................ 80 

Figure 29.  Perspective view of 20 with thermal ellipsoids at the 50% probability       

level …………………. .............................................................................. 81 

Figure 30.  Perspective view of 21 with thermal ellipsoids at the 50% probability       

level …………………. .............................................................................. 82 

Figure 31.  Perspective view of 22 with thermal ellipsoids at the 50% probability       

level …………………. .............................................................................. 83 



www.manaraa.com

xiii 
 

Figure 32.  tert-Butyl peroxy ester group-aromatic ring interactions (blue) of 17 ........ 91 

Figure 33.  tert-Butyl peroxy ester group-aromatic ring and nitro group-aromatic ring 

interactions (blue) of 22 ........................................................................... 91 

Figure 34.  Intra- and intermolecular O···O contacts (blue) of 21 (left) and 22                   

(right) ....................................................................................................... 92 

Figure 35.  Large voids (4.912 and 7.651 Å) among the molecules of 20 .................. 92 

Figure 36.  Structure of geminal hydroperoxides ...................................................... 108 

Figure 37.  The series of geminal hydroperoxides 23–38 ......................................... 110 

Figure 38.  Perspective view of 24 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 116 

Figure 39.  Perspective view of 26 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 117 

Figure 40.  Perspective view of 27 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 118 

Figure 41.  Perspective view of 29 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 119 

Figure 42.  Perspective view of 30 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 120 

Figure 43.  Perspective view of 34·diethyl ether with thermal ellipsoids at the 50% 

probability level …………………. .......................................................... 121 

Figure 44.  Perspective view of 36 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 122 

Figure 45.  Hydrogen bonded (red and blue) molecular stacks of 29 ....................... 128 



www.manaraa.com

xiv 
 

Figure 46.  Hydrogen bonded (red and blue) molecular layers of 36 ........................ 129 

Figure 47.  C–H···π interactions (blue) of 36 ............................................................ 129 

Figure 48.  Intermolecular interactions (red) of the O–O trigger bonds of 36 ............ 130 

Figure 49.  Five- and six-membered cyclic peroxides............................................... 150 

Figure 50.  Dihydroperoxy dioxane 39 and dioxolanes 40–43 .................................. 151 

Figure 51.  Hydroperoxy dioxanol 44 and dioxolanols 45–48 ................................... 151 

Figure 52.  Perspective view of 39 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 161 

Figure 53.  Perspective view of 40 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 162 

Figure 54.  Perspective view of 41 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 163 

Figure 55.  Perspective view of 42 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 164 

Figure 56.  Perspective view of 43 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 165 

Figure 57.  Perspective view of 45 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 166 

Figure 58.  Perspective view of 46 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 167 

Figure 59.  Perspective view of 47 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 168 



www.manaraa.com

xv 
 

Figure 60.  Perspective view of 48 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 169 

Figure 61.  Intramolecular O–H···O hydrogen bond (blue) of 45 .............................. 177 

Figure 62.  Pairs of molecules interacting mainly through O–H···O hydrogen bonds 

(blue) in the crystal structures of 40 (left) and 45 (right)  ....................... 178 

Figure 63.  Molecular stacks of 41 without (left) and with (right) short contacts in 

between the stacks ............................................................................... 179 

Figure 64.  Non-interacting molecular stacks of 43 along a (top) and c (bottom) 

directions ............................................................................................... 180 

Figure 65.  Aromatic peroxy acids 49–52 ................................................................. 203 

Figure 66.  Perspective view of 49·DMF with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 209 

Figure 67.  Perspective view of 52 with thermal ellipsoids at the 50% probability       

level …………………. ............................................................................ 210 

Figure 68.  Wave-like layers of 49·DMF assisted by intermolecular O–H···O hydrogen 

bonds (blue and red) between 49 and DMF …………………. ............... 214 

Figure 69.  Edge-to-face π-interaction of 52 ............................................................. 215 

Figure 70.  Stabilizing intermolecular interactions of 52 ........................................... 215 

Figure 71.  Crystal packing of molecules in the X-ray crystal structure of 52 without 

hydrogen bonds or short contacts…………………. ............................... 217 

Figure 72.  2,4,6-Trinitrobenzoperoxoic acid (53) ..................................................... 218 

 

 



www.manaraa.com

xvi 
 

LIST OF SCHEMES 

Scheme 1.  Current synthesis of TATP ....................................................................... 21 

Scheme 2.  Synthesis of pure DADP .......................................................................... 24 

Scheme 3.  Synthesis of HMTD .................................................................................. 26 

Scheme 4.  Synthesis of MEKP. ................................................................................. 28 

Scheme 5.  Synthesis of tert-butyl peroxides. ............................................................. 43 

Scheme 6.  Synthesis of tert-butyl peroxy esters ........................................................ 73 

Scheme 7.  Synthesis of geminal hydroperoxides .................................................... 112 

Scheme 8.  Synthesis of cyclic dihydroperoxy and hydroperoxy compounds ........... 154 

Scheme 9.  Synthesis of aromatic peroxy acids ....................................................... 205 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

xvii 
 

LIST OF ABBREVIATIONS 

ABBREVIATION                 LONG FORM 

HEDM ................................................................................ High Energy Density Material 

IS ......................................................................................................... Impact Sensitivity 

FS....................................................................................................... Friction Sensitivity 

TNT .......................................................................................................... Trinitrotoluene 

RDX ................................................................................... Cyclotrimethylenetrinitramine 

PETN ...................................................................................... Pentaerythritol tetranitrate 

HMX ......................................................................... Cyclotetramethylenetetrainitramine 

CL-20 ............................................................................ Hexanitrohexaazaisowurtzitane 

ONC ...................................................................................................... Octanitrocubane 

LA ................................................................................................................... Lead azide 

LS ........................................................................................................... Lead Styphnate 

MF ......................................................................................................Mercury Fulminate 

ESDS ........................................................................ Electrostatic Discharge Sensitivity 

VDet ................................................................................................... Detonation Velocity 

PDet ..................................................................................................Detonation Pressure 

N........................................... Number of Moles of Gas Released Per Gram of Explosive 

M ................................................................................................... Average Mass of Gas 

QDet ...................................................................................................... Heat of Explosion 

ρ0 ........................................................................................................... Loading Density 

ρ .........................................................................................................Crystalline Density 

Ω ........................................................................................................... Oxygen Balance 



www.manaraa.com

xviii 
 

ABBREVIATION                 LONG FORM 

MW ...................................................................................................... Molecular Weight 

BAM ....................................................................... Bundesanstalt für Materialforschung 

V0 ...................................................................................................... Detonation Volume 

TATP ........................................................................................... Triacetone Triperoxide 

DADP ............................................................................................ Diacetone Diperoxide 

MEKP ............................................................................... Methyl Ethyl Ketone Peroxide 

HMTD .................................................................... Hexamethylene Triperoxide Diamine 

R.................................................................................................................... Alkyl Group 

OSHA ........................................................ Occupational Safety & Health Administration 

GHS ............. Globally Harmonized System of Classification and Labeling of Chemicals 

ΔfH° .....................................................................................................Heat of Formation 

TDec ..................................................................................... Decomposition Temperature 

O:C ......................................................................................................... Oxygen:Carbon 

TATB ...................................................................... 2,4,6-Triamino-1,3,5-trinitrobenzene 

TGA ................................................................................... Thermogravimetric Ananlysis 

DTA .................................................................................... Differential Thermal Analysis 

V ........................................................................................................Volume of Unit Cell 

Z .............................................................................................. Number of Formula Units 

T .................................................................................................................. Temperature 

λ ................................................................................................................. Wave Length 

ρcalc ................................................................................... Calculated Crystalline Density 

μ ................................................................................................... Absorption Coefficient 



www.manaraa.com

xix 
 

ABBREVIATION                 LONG FORM 

VdW ............................................................................... Sum of the van der Waals radii 

ΔExU° ..............................................................................................Energy of Detonation 

αν .................................................................................... Thermal Expansion Coefficient 

TITNB ........................................................................ 1,3,5-Triiodo-2,4,6-trinitrobenzene 

 



www.manaraa.com

1 
 

 

CHAPTER 1 

Introduction 

1.1 High Energy Density Materials (HEDMs) 

 HEDMs rapidly release energy through an exothermic process upon initiation by 

shock, friction, heat, or electrostatic discharge. The energy release is often associated 

with a total volume expansion due to high volumes of hot gases evolved. HEDMs are 

important components of rocket propellants, missile propellants, air-bag inflators, 

fireworks, and as explosives in quarrying, tunneling, mining, demolition, and military 

applications.1 The development of HEDMs began with the discovery of black powder in 

about 220 BC in China, which was widespread at the end of the 13th century as a 

military explosive.2 Black powder consists of charcoal (15%) and sulfur (10%) as fuels 

and potassium nitrate (75%) as the oxidant.3 The first HEDM to have the fuel and the 

oxidant combined into a single molecule was nitroglycerin (Figure 1), which was 

discovered in 1846 by Ascanio Sobrero.4 This discovery of nitroglycerin has lead to the 

modern HEDMs with high oxygen and nitrogen contents. High energy density materials 

can be placed into three main categories based on their different properties: low 

explosives, high explosives, and tertiary explosives. 

 

 

 

Figure 1. Structure of nitroglycerin.  
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1.1.1 Low Explosives 

 Low explosives are materials that deflagrate due to material decomposition at 

subsonic rates (few cm/s up to 400 m/s).5 They are usually mixtures of a combustible 

material like charcoal, sulfur, metallic species (Mg, Cr, Al, and Ti), red phosphorus, 

silicon, and boron and an oxidant like KNO3, NH4NO3, NH4ClO4, and KClO4.2 Low 

explosives are mainly used as propellants and pyrotechnics. Propellants provide the 

thrust required for rockets, missiles, and engines. Pyrotechnics are employed to 

produce heat, light, color, smoke, sound, or a combination of these effects. Examples of 

pyrotechnics are signal flares, fireworks, smoke-munitions, matches, and air-bag 

inflators. 

1.1.2 High Explosives 

 High explosives are materials that can detonate due to material decomposition at 

supersonic rates, creating a supersonic shock wave with a velocity of 3,500–10,100 

m/s.6 They are usually single component materials that are either inorganic compounds, 

organic molecules, or polymers. There are two main subclasses of high explosives 

based on their sensitivity to impact and friction: primary and secondary explosives.  

1.1.2.1 Primary Explosives 

 Primary explosives are high in sensitivity to impact and friction stimuli (impact 

sensitivity (IS): ≤ 4 J and friction sensitivity (FS): ≤ 10 N).2 They have lower detonation 

velocities in the range of 3,500–5,500 m/s with respect to the secondary explosives.6 

The common primary explosives are inorganic compounds: lead azide (LA), lead 

styphnate (LS), and mercury fulminate (MF) shown in Figure 2.  
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Figure 2. Common primary explosives. 

 

 Table 1 includes sensitivities and detonation velocities of these common primary 

explosives.6b,7 LA, LS, and MF are all extremely sensitive to impact and friction stimuli 

and have low detonation velocities. They are mainly employed as initiating substances 

or primaries in blasting and percussion caps.8 A major disadvantage of their use is that 

expensive and time consuming clean up procedures have to be carried out in shooting 

ranges due to bio-hazardous heavy metal residues resulting from the detonations.9 

Table 1. Energetic properties of common primary explosives.6b,7 

Compound IS (J) FS (N) Electrostatic Discharge 
Sensitivity  (ESDS, mJ) 

Detonation 
Velocity (VDet, m/s) 

LA 2.5–4 0.1 4.7 5300 

LS 2.5–5 0.1 0.2 5200 

MF 0.2–2 6.5–7.5 0.51–0.62 4250 

 
1.1.2.2 Secondary Explosives 

 Secondary explosives are low in sensitivity to impact and friction stimuli (IS: ≥ 4 J 

and FS: ≥ 50 N).2 They have higher detonation velocities in the range of 5,500–10,100 

m/s with respect to primary explosives.6 The common secondary explosives are organic 

compounds that contain nitro functional groups (Figure 3). The nitro group is a relatively 
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unstable functional group and provides nitrogen and oxygen to form gaseous 

decomposition products. 

 

 

Figure 3. Common secondary explosives. 

 

 Table 2 includes sensitivities and detonation velocities of common secondary 

explosives.1e,6b,10 These low sensitivity and high power secondary explosives are mainly 

used in large scale demolition tasks in both civil and military applications. 

Table 2. Energetic properties of common secondary explosives.1e,6b,10 

Compound IS (J) FS (N) ESDS (J) VDet (m/s) 
TNT 15 353 0.57 6,900 

PETN 3–4.2 80 0.65–0.115 7,720 

RDX 7.4 120 0.15 8,750 

HMX 7.4 120 0.21 9,100 

CL-20 4 54 low 9,500 

ONC low low low 10,100 



www.manaraa.com

5 
 

 

1.1.3 Tertiary Explosives 

 Tertiary explosives are highly insensitive to impact and friction. Thus, a 

detonation from a secondary explosive material is required to initiate tertiary explosives. 

They are primarily used due to the low material costs and safety in handling. Tertiary 

explosives are mainly employed in mining and construction work. Ammonium nitrate 

fuel oil (ANFO) is an example of a tertiary explosive. It consists of NH4NO3 (94%) as the 

oxidizer and petroleum oil (6%) as the fuel and has a detonation velocity of 3,300 m/s.11 

1.2 Deflagration and Detonation 

 Deflagration and detonation are the two main processes that cause energy to be 

released from HEDMs. Deflagration is the main process by which energy is released 

from low explosive propellants and pyrotechnics. Detonation is the main process by 

which energy is released from high and tertiary explosives in large scale demolition 

tasks. 

1.2.1 Deflagration Process 

 Deflagration is a regular self-propagating combustion process that does not 

require an external oxygen source, which differentiates it from pure combustion. 

Deflagration occurs at subsonic rates (few cm/s up to 400 m/s) due to heat transfer (via 

a thermal wave) in the material.5 The rates of deflagration can be increased by addition 

of inorganic salts like ferrocene derivatives, which act as deflagration catalysts.12 Partial 

confinement or obstacles in the heat transfer path of the materials may lead to 

acceleration of the flame front to supersonic speeds and a transition from deflagration to 

detonation.2 
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1.2.2 Detonation Process 

Detonation is a much more rapid process (ps–μS)13 than deflagration and occurs 

at supersonic rates due to a supersonic shock wave (3,500–10,100 m/s).6 The shock 

waves can compress the material, heat it, and induce explosive decompositions in a 

stepwise material decomposition process (Figure 4).14 Initially, when a physical stimulus 

is provided on a bulk material via a shock, impact, friction, or electrostatic spark, shears 

or cracks appear in the crystalline lattice. Then, physico-chemical responses arise in 

defect hot spots where energy is concentrated and converted to heat. This heat causes 

various chemical reactions and molecular degradations until atoms are produced. 

Temperatures generated in HEDMs may reach up to 2,000–5,000 °C.13 Finally, due to 

atom recombinations, stable gaseous products are formed that are released to the 

environment. This causes a large volume expansion that could be about 10,000–15,000 

times the original volume of a HEDM.13   

 

Figure 4. Detonation as a stepwise material decomposition process.14 
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1.3 Design of HEDMs 

 The design of HEDMs is aimed towards achieving three main goals: (i) a better 

performance, (ii) lower sensitivities for safety, and (iii) lower toxicity.2 The main 

performance criteria are detonation velocity (VDet, m/s), detonation pressure (PDet, kbar), 

and heat of explosion (QDet, kJ/kg). There are many important properties that are 

considered in the design of HEDMs.2,15  

� High crystalline densities (≥ 1.8 g/cm3) 

� High oxygen and nitrogen contents  

� Optimal sensitivities  

� High thermal stabilities (≥ 150 °C) 

� Compatibility with chemicals and moisture 

� Economical synthetic procedures 

� Absence of heavy metals or perchlorate (ClO4–) 

1.3.1 High Crystalline Densities 

A high crystalline density (≥ 1.8 g/cm3) is important to obtain a high VDet and PDet 

for a better energetic performance, and is a key parameter that is considered in 

designing energetic materials.16 Compounds with highly symmetrical packing modes 

and some zwitterionic compounds are known to have better energetic performances 

due to increased crystalline densities.17 Based on the Kamlet and Jacobs empirical 

relationships of Equations 1 and 2, loading density (ρ0, g/cm3) can be related to VDet 

(m/s) and PDet (kbar), respectively; 

)1(10 0
2

1
3 ρBAVDet +Φ=       (1) 
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Φ= 2

0ρKPDet         (2) 

 01.1=A , 30.1=B , 88.15=K  

 2
1

2
1

DetQNM=Φ  

where N is the number of moles of gas released per gram of explosive (mol/g), M is the 

average mass of gas (g/mol), and QDet is the heat of explosion (Cal/g). 2  

 Equation 1 can be rearranged to Equation 3, which explicitly shows a linear 

relationship between VDet and ρ0.  

 
2

1
32

1
3 1010 Φ+Φ= ABAV oDet ρ      (3) 

  

  y        =          m          x     +        c 

Based on Equation 2, PDet is proportional to ρ02. Thus, increasing ρ0 increases both VDet 

and PDet or the overall performance. The ρ0 is higher when the crystalline density (ρ) is 

higher and the maximum theoretical ρ0 for a particular substance is its crystalline 

density. Thus, for a better detonation performance, compounds with higher crystalline 

densities need to be obtained.  

1.3.2 High Oxygen and Nitrogen Contents  

Increasing the oxygen and nitrogen contents has been a popular strategy used to 

increase the endothermicity or energy stored in molecules that could be released in 

decompositions.18 The release of an N2 molecule from a compound with nitrogen-

nitrogen single and/or double bonds releases a large amount of energy (227 kcal/mol) 

and thus, many high nitrogen compounds are synthesized as HEDMs.19 A higher 
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oxygen content is important for a more complete combustion process where more 

energy can be released. The degree to which an explosive can be oxidized is given by 

the oxygen balance (Ω).20 It can be defined as the weight percentage of oxygen after 

the complete oxidation of all the other elements on the molecule. For a simple organic 

molecule with the formula of CxHyOzNa, Ω is given by Equation 4;  

)22(
1600

zyx
MW

−+−=Ω
     (4) 

where MW is the molecular weight of the compound and C and H are considered to be 

completely oxidized into CO2 and H2O. Nitrogen is not included in Equation 4 since it is 

released as gaseous N2. More terms need to be included in the presence of S (oxidized 

to SO2) and/or metals (oxidized to metal oxides). Based on equation 4, Ω can be either 

positive, zero, or negative. If Ω is equal to zero, the molecule is referred to as an oxygen 

balanced molecule. The more positive oxygen balance values are preferred since they 

render more energetic compounds. Increasing the oxygen balance increases the QDet 

and QDet reaches the maximum when Ω is zero.1e Although it is desirable to increase the 

oxygen and nitrogen contents, high oxygen and nitrogen contents result in extremely 

sensitive compounds with high impact and friction sensitivities.21 A common remedy has 

been to blend the organic compounds with oxygen rich inorganic compounds like 

NH4NO3, NH4ClO4, KNO3, and KClO4. Still, more research is carried on to obtain organic 

HEDMs with high oxygen and nitrogen contents that can be safely handled since rapid 

self-sustained molecular level combustion is preferred over combustion of physical 

mixtures.  

 



www.manaraa.com

10 
 

 

1.3.3 Optimal Sensitivities  

Optimal sensitivities of HEDMs are important for effectiveness in the applications 

and for safety in handling, storage, and transport. Primary explosives are more sensitive 

to stimuli than secondary explosives. Impact sensitivities of common primary explosives 

are in the range of 0.2–5 J while friction sensitivities are in the range of 0.1–10 N.6b For 

safety in handling and transport, impact and friction sensitivity values should ideally be ≥ 

3 J and ≥ 10 N, respectively. Secondary explosives should ideally be less sensitive than 

PETN (IS: 3–4.2 J and FS: 80 N).6b Electrostatic discharge sensitivity values of HEDMs 

should be > 25 mJ, even for laboratory use, since the human body can produce sparks 

of ~20 mJ.2 It is an extremely challenging process to gain highly energetic molecules 

with low sensitivities for impact and friction stimuli. 

1.3.4 High Thermal Stabilities 

Higher decomposition temperatures provide high thermal stabilities and are 

important for heat resistant energetic materials.1a,22 For HEDM applications thermal 

stabilities should be ≥ 150 °C.2 Even though a high thermal stability is valuable, it is 

hard to find compounds with large energy contents that are thermally stable. Energetic 

compounds require at least sufficient kinetic stabilities to avoid accidents during 

handling. Thermally stable HEDMs are synthesized by strengthening intra- and 

intermolecular interactions, especially employing hydrogen bonding interactions and 

forming energetic salts.16,22 

1.3.5 Compatibility with Chemicals and Moisture 

 In most of HEDM applications, energetic formulations are formed with binders, 

plasticizers, other HEDMs, oxidants, etc.23 Thus, chemical compatibility is important to 
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retain the detonation performances within the formulations. Inorganic compounds are 

more susceptible to damage due to moisture, which is highly disadvantageous for long-

term storage. Organic compounds and polymeric materials are more resistant to 

moisture due to low water solubility. Often mixtures of inorganic and organic/polymeric 

materials are used to avoid loss of explosive power due to water damage. 

1.3.6 Economical Synthetic Procedures 

The ease of syntheses and scale up, low cost, and the availability of bulk starting 

materials render economical synthetic procedures. They are important for wide 

applicability of HEDMs. Many research efforts are carried out to improve the syntheses 

of high performing HEDMs.24 

1.3.7 Absence of Heavy Metals or Perchlorate (ClO4
–) 

 The common primary explosives LA, LS, and MF contain heavy metals that 

cause heavy metal poisoning. Many organs such as kidneys, heart, and intestines as 

well as the skeletal, reproductive, and nervous systems in the human body can be 

adversely affected by heavy metal poisoning. Extensive use of NH4ClO4 as an oxidant 

over decades has resulted in it leaching into ground water, causing groundwater 

plumes.25 Accumulation of NH4ClO4 in ground water causes human exposure to ClO4– 

ions. The ClO4– ions are similar in size to I– ions, resulting in a competitive inhibition of 

iodine uptake in the thyroid gland and disruption of numerous metabolic pathways.26 

Thus, there is a need for greener HEDMs. Numerous research efforts have been 

dedicated to find replacements for the inorganic primary explosive LA and the tertiary 

explosive NH4ClO4.27 
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1.4 Sensitivity and Energetic Performance Tests and Calculations 

1.4.1 Sensitivity Assessments 

1.4.1.1 Preliminary Qualitative Sensitivity Tests 

Preliminary qualitative sensitivity tests are the Bunsen burner flame test, hammer 

impact test, sand paper friction test, and Tesla coil electrostatic discharge test as shown 

in Figure 5. Sudden, large, and bright flames in the flame tests, loud noises in the 

hammer and sand paper tests, and sudden appearances of flames in the Tesla coil 

tests are considered to be positive responses of sensitive and energetic compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Preliminary qualitative sensitivity tests. 

Flame Test Hammer Test 

Sand Paper Test Tesla Coil Test 
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1.4.1.2 Standard Quantitative Sensitivity Tests 

 Impact and friction sensitivities of HEDMs are quantified using internationally 

accepted standard methods. Thus, these sensitivities obtained can be compared with 

the sensitivities of the other HEDMs in literature. Still, there could be variations based 

on the country and the various standardizations employed. Electrostatic discharge 

sensitivity data are obtained with different instruments and modes using various 

standardizations. These electrostatic discharge sensitivity measurements also depend 

on numerous environmental conditions like humidity, temperature, and pressure, which 

causes a high variability of the data obtained.2 Hence, the electrostatic discharge 

sensitivity data are generally not comparable with what is available in literature. Impact, 

friction, and electrostatic discharge sensitivity data are classified based on the “UN 

Recommendations on the Transport of Dangerous Goods”.28 

1.4.1.2.1 Impact Tests 

 Impact sensitivity tests can be carried out according to STANAG 448929 modified 

instructions30 using a BAM (Bundesanstalt für Materialforschung) drop hammer.31 A 

HEDM is placed in the sample holder and a series of increasing weights can be 

dropped from a fixed height or a fixed weight can be dropped from varying heights. A 

test is considered positive when a distinguishable sound (~160 dB) is heard. A 

compound is declared as sensitive when one out of six tests is obtained as positive.  

1.4.1.2.2 Friction Tests  

 Friction sensitivity tests can be carried out according to STANAG 448732 modified 

instructions33 using a BAM friction tester. A line of a HEDM is laid on a ceramic plate 

and a ceramic peg is kept on it. Then, the ceramic plate is moved so that the ceramic 
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peg is exerting a frictional force on the sample. The force exerted on the sample is 

varied by using weights and distances of the weight. A test is considered positive when 

a detonation is observed. Sensitivity is obtained when one out of six tests is positive.  

1.4.1.2.3 Electrostatic Discharge Tests  

Compounds can be tested for sensitivity towards electrostatic discharge using an 

electrostatic spark tester according to STANAG 4515 instructions.34 These 

measurements can vary based on the instrument, methods, physical properties of the 

sample, and environmental conditions. Basically, a HEDM is incorporated in a sample 

holder and a charge is exerted through an electrode. The test is considered to be 

positive when a physical change or a detonation is observed or a sound is heard after 

the electricity interacted with the HEDM. 

1.4.2 Energetic Performance Tests and Calculations 

 Energetic performances of HEDMs are assessed by using parameters VDet, PDet, 

QDet, and detonation volume (V0). Determination of these energetic parameters requires 

restricted Cheetah-code or Explo5 calculations.6b The heat of formation (ΔfH°) values of 

HEDMs required for energetic performance calculations are either obtained by 

theoretical calculations using a Gaussian software or experimentally using bomb 

calorimetry.2 Various energetic performance and sensitivity tests can be experimentally 

performed using detonation chambers.2 These detonation chambers are made of thick 

steel walls and are able to dissipate the energy from the detonation shock wave to 

confine the explosions.6b 
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1.5 Peroxo-Based Oxygen-Rich Compounds for Use as Greener HEDMs 

 Organic peroxo-based compounds have been categorized as a class of greener 

HEDMs with CO2 and/or CO, H2O, and O2 as the main decomposition products. The 

availability, ease, and low cost of syntheses are advantageous properties of peroxo-

based compounds. Hydrogen peroxide (H2O2), the simplest peroxide, has been 

employed as a greener liquid rocket propellant.35 Triacetone triperoxide (TATP), 

diacetone diperoxide (DADP), hexamethylene triperoxide diamine (HMTD), and methyl 

ethyl ketone peroxide (MEKP) are the only well-characterized examples of organic 

peroxo-based HEDMs (Figure 6).35,36  

 

 

Figure 6. Well-characterized peroxo-based oxygen-rich explosives. 

 

 TATP, DADP, HMTD, and MEKP are known to be extremely sensitive to impact 

and friction that cause difficulties in handling,35,36 which has hindered the progress of 
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research in this field and their practical use in civil or military HEDM applications. 

Unfortunately, they have been employed in multiple terrorist attacks due to the ease of 

synthesis using widely available starting materials. Thus, TATP, DADP, HMTD, and 

MEKP are referred to as “peroxo-based homemade explosives.”36f To ensure safety, a 

large body of research efforts has been dedicated to discover new detection methods 

for these non-nitrogen-containing peroxo-based explosives.37 The maximum possible 

oxygen contents that can be safely incorporated onto peroxo-based compounds, their 

energetic properties, and paths to gear towards safer less sensitive peroxo-based 

compounds need to be systematically studied to understand and reach beyond the 

boundaries set by the few well-characterized peroxo-based explosives. 

1.5.1 Properties and Applications of Peroxo-Based Compounds  

 Organic peroxo-based compounds contain one or more weak O–O bonds and 

are derivatives of HOOH, where one or both hydrogens are substituted with a group that 

contains carbon. Benzoyl peroxide (Figure 7) was the first organic peroxide synthesized 

by B. C. Brodie in 1858.38 In early 20th century, benzoyl peroxide was found to be an 

efficient bleaching agent and industrial use of peroxides was initiated. 

 

 

Figure 7. Benzoyl peroxide. 

 

During the Second World War, peroxides were employed as polymerization 

initiators with the demand for synthetic rubber and plastics.39 Currently, many organic 
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peroxides have been synthesized and isolated that are classified based on their 

structures to different sub-classes. The main peroxo-based sub-classes are 

hydroperoxides, dialkyl peroxides, ozonides, peroxy acids, peroxy esters, diacyl 

peroxides, and peroxy dicarbonates (Figure 8). 

 

 

Figure 8. Peroxide subclasses based on structure. 

 

 The O–O bond dissociation energy of peroxides is relatively low and is in the 

range of 45–50 kcal/mol.40 Due to this low O–O bond dissociation energy, peroxo-based 

compounds tend to be highly reactive and are known to be thermally and photolytically 

sensitive.41 They undergo homolysis forming two highly reactive radical species 

(Equation 5). Peroxo-based compounds are also able to undergo oxidation, reduction, 

heterolysis, hydrolysis, and rearrangements.39,42 
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         (5)  

 Since organic peroxides burn rapidly and are sensitive to impact and friction, they 

are placed into the hazard classification class 5.2 by the occupational safety & health 

administration (OSHA) according to UN recommendations on the transport of 

dangerous goods.43a The hazard pictogram for organic peroxides from the globally 

harmonized system of classification and labeling of chemicals (GHS) is shown in Figure 

9.43b,c  

 

 

Figure 9. GHS hazard pictogram for organic peroxides.43c 

 

 Peroxides are involved in many biological processes: development of rancidity in 

fats, oxidative damage on proteins, sugars, enzymes, and DNA, and oxidation of lipids 

in association with oxygenase enzymes.39,44 Lipid peroxidation has been related to 

pathological conditions such as cancer and aging.44 They are also involved in 

atmospheric and stratospheric chemistry.45  
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 There are many applications for peroxo-based compounds based on the ability to 

produce reactive radical species and undergo oxidation and reduction. They are widely 

used as polymerization initiators,46 curing and vulcanizing agents,47 cross-linking 

agents,48 bleaching and disinfecting agents,49 oxidizing/reducing agents,39 and have 

been used in syntheses of organic compounds50 for decades. Radical species produced 

by oxygen-rich peroxo-based compounds can initiate subsequent radical chain 

reactions promptly releasing gaseous decomposition products and large contents of 

energy, causing detonation responses, which renders them suitable as HEDMs. Based 

on the high impact friction sensitivities, peroxo-based compounds TATP, DADP, MEKP, 

and HMTD have been categorized as primary explosives.35,36  

1.5.2 Hydrogen Peroxide (H2O2) 

 H2O2 was first discovered in 1818 by L. J. Thénrad as a product of the reaction 

between nitric acid and barium peroxide (BaO2).51 Pure hydrogen peroxide is a light 

blue liquid, but it is commonly available as colorless aqueous solutions. For general 

use, aqueous 3–6% by weight of H2O2 solutions are available. Concentrations up to 

50% by weight of H2O2 can be commercially obtained. When the concentration is > 70% 

by weight of H2O2, aqueous solutions are considered explosive. H2O2 is currently mainly 

produced by the anthraquinone oxidation process, which employs an anthraquinone 

derivative (2-ethylanthraquinone or 2-amylanthraquinone), H2, and atmospheric 

oxygen.51 H2O2 has a wide variety of applications. It is important in biology, medicine, 

pulp and paper bleaching, cosmetics, detergents, disinfectants, wastewater treatment, 

textile industry, electronics industry, chemical synthesis, and as a liquid rocket 

propellant.52  
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The density of pure H2O2 (1.448 g/cm3) is greater than H2O (1.000 g/cm3) and 

along with the high positive oxygen balance (47%) it is an attractive candidate as a 

HEDM.35 The decomposition rate of H2O2 into H2O and O2 is low at room temperature, 

but at elevated temperatures it rapidly decomposes, causing an explosive response 

(especially at > 70% by weight concentrations). Decomposition of H2O2 is catalyzed by 

strong acids, strong bases, metals such as copper and silver, metal salts, and light. Due 

to the greener decomposition products, it is a preferred propellant over HNO3 and 

N2O4.35 H2O2 was first used in the World War II as a rocket propellant and a fuel for 

underwater torpedoes. The reported detonation velocities of H2O2 are in the range of 

5,500–6,000 m/s and it is a moderately powerful HEDM.53 H2O2 has also been mixed 

with other fuels like methanol, ethanol, and glycerol and has obtained detonation 

velocities that are as high as 6,700 m/s.53 One of the challenges of using H2O2 as a 

rocket propellant is to develop effective long-lived catalytic beds for a reliable 

performance. Currently, silver, alkali metals, and manganese oxides are employed in 

these catalytic beds.54 An insensitive H2O2-based HEDM formulation was prepared 

using cellulose and 83 wt.% H2O2.53 

1.5.3 Highly Energetic Organic Peroxo-Based Compounds  

 Generally, low molecular weight organic peroxides are considered to be 

potentially explosive compounds. Common solvents like ether, tetrahydrofuran, and 2-

propanol and over 200 organic and inorganic compounds have been categorized as 

“peroxide forming chemicals.”39 Upon exposure of peroxide forming chemicals to 

atmospheric oxygen, peroxides are formed either spontaneously or when concentrated 

and may result in formation of shock and friction sensitive polymeric peroxides. Thus, 
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safety precautions need to be taken in their use. TATP, DADP, HMTD, and MEKP are 

the well-characterized organic peroxo-based primary explosives. 

1.5.3.1 TATP 

 TATP was first synthesized by R. Wolffenstein in 1895 by the uncatalyzed 

reaction of acetone and 50 wt.% H2O2 solution. The reaction was kept for four weeks to 

obtain TATP as a solid precipitate in a low yield (27%).55 Sulfuric acid was then used 

initially in large quantities, and later in catalytic amounts.56 The current synthesis of 

TATP is shown in Scheme 1.35 The yield of TATP was found to depend on the reaction 

temperature, molar ratio of acid to H2O2/acetone, concentration of reactants, and 

reaction time.57a DADP is the major byproduct in the syntheses of TATP. TATP is the 

major form at room temperature in mild acidic conditions.57 

 

Scheme 1. Current synthesis of TATP. 

The trimeric structure of TATP was proposed by R. Wolffenstein but it was 

confirmed only after obtaining a crystal structure by P. Groth.58 TATP has a “twisted 

boat chair” conformation in the crystal structure.59 There are molecular stacks with no 

C–H···O interactions in between, and only weak H···H intermolecular contacts of 2.4 Å 

hold the molecular stacks together.59 Thus, there is no extensive hydrogen-bonded 

network to stabilize TATP, which may be one of the reasons for the high sensitivities to 

impact and friction. There is no ring strain in the structure and the O–O bond lengths 

1.470(2) Å are similar to H2O2 (1.474 Å).28 Denkamp et. al. reported that two conformers 
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of TATP with D3 and C2 symmetry exist at room temperature.60 Later, six different 

polymorphic crystals were obtained by varying the acid catalyst used in the synthesis 

and the solvent used in re-crystallization.61 

The sensitivities and energetic properties of TATP are given in Table 3. TATP is 

extremely sensitive to impact and friction stimuli and is categorized as a primary 

explosive. In early 20th century, TATP was used as a primary explosive in place of toxic 

mercury fulminate in detonators and as a mixture with NH4NO3.  

Table 3. Sensitivities and energetic properties of TATP.6b, 35,64,65 

Property TATP 

IS (J) 0.3 

FS (N) 0.1 

ESDS (J) 0.0056 

ρ (g/cm3) 1.272 

Decomposition temperature (TDec, °C) 150–160 

ΔfH° (kJ/mol) –583.8±44 

VDet (m/s) 5,300 

Calculated VDet (m/s) 6,168 

QDet (kJ/kg) –2,745 

 V0 (L/kg) 855 

 

Unfortunately, TATP is a highly volatile compound and 66% of mass is lost in two 

weeks at room temperature,62 which is a highly disadvantageous property for long-term 

storage. Due to the high sensitivities and low stability, TATP is not currently employed in 

civil or military applications, but it has been used in multiple terrorist attacks. There have 
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been some attempts to reduce the high sensitivities of TATP using different strategies 

without much success.63 

 The decomposition products of TATP were studied by Oxley, who discovered 

acetone and CO2 were the main decomposition products while multiple organic 

compounds were also observed.66 Dubnikova has proposed that the explosive 

decomposition of TATP is primarily an energy-neutral entropic explosion where one 

molecule of solid TATP is decomposed to four gaseous molecules including three 

acetone molecules and one ozone molecule based on X-ray crystallography and 

electronic structure calculations.59 Sinditskii has calculated and experimentally 

measured the heat of explosion and has described the decomposition of TATP as an 

exothermic process with acetone and CO2 as the main decomposition products.65 

1.5.3.2 DADP 

DADP was first synthesized in 1900 by Baeyer and Villiger. It is usually obtained 

in the synthesis of TATP as a byproduct. Synthesis of pure DADP is carried out by p-

toluenesulfonic acid-catalyzed isomerization of TATP or by slow addition of H2O2 to a 

mixture of acetone and methanesulfonic acid catalyst at –5 °C (Scheme 2).59 DADP is 

more volatile than TATP in the temperature range of 15–50 °C and it is a highly 

disadvantage property for long-term storage.59,67 

A chair conformation is adopted by DADP in the solid state and the O–O bond 

lengths (1.471 Å) are similar to TATP and H2O2.35 The crystalline density of DADP 

(1.331 g/cm3) is higher than that of TATP (1.272 g/cm3).59 There are intralayer C–H···O 

interactions formed by all four oxygen atoms of the ring in the crystal structure, which 

can stabilize the O–O bonds with respect to TATP, resulting in lower sensitivities than 
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TATP.52 In between the molecular stacks of DADP, only weak hydrophobic contacts are 

present from the methyl groups.59,67 

 

Scheme 2. Synthesis of pure DADP. 

 The sensitivities and energetic properties of DADP are given in Table 4. It is also 

a highly sensitive primary explosive but the sensitivities are less than TATP. Recently, 

co-crystallization was reported as a method to use complex solid state characteristics to 

influence the stabilities and sensitivities of peroxo-based co-crystals of DADP.68 

Specifically, the stabilization achieved by I···O close contacts in the crystalline lattice 

was proposed as the cause for the reduced sensitivity of DADP.68  

 The calculated detonation performance is higher than TATP primarily due to the 

higher crystalline density, but it is experimentally reported to be less explosive than 

TATP. 35,64 Usually, TATP and DADP are tested as mixtures and the detonation velocity 

of pure DADP has not yet been reported. 
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Table 4. Sensitivities and energetic properties of DADP.6b, 35,64,65 

Property DADP 

IS (J) 1.4 

FS (N) 2.99 

ESDS (J) 0.026 

ρ (g/cm3) 1.331 

 TDec (°C) 165 

ΔfH° (kJ/mol) –355.1±51 

VDet (m/s) less than TATP 

Calculated VDet (m/s) 6,773 

QDet (kJ/kg) –2,837 

V0 (L/kg) 713 

 

 The decomposition kinetics of DADP were studied in the temperature range of 

130–250 °C and is first-order with respect to DADP with acetone as the major organic 

product.35 DADP is the less preferred acetone peroxide for HEDM applications due to 

the lower performance, higher volatility, and lower thermal stability than TATP. The 

energetic performances of some DADP derivatives with nitro groups have been recently 

calculated and impressive theoretical performances were observed.69 

1.5.3.3 HMTD 

 HMTD was first synthesized by L. Legler in 1885 by the acid catalyzed reaction 

of hexamine and H2O2 (Scheme 3).70 The two nitrogen atoms of HMTD are bridged by 

three O–O bonds. HMTD is the known peroxo-based explosive with the highest 
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oxygen:carbon (O:C) ratio, which is 1:1. It also contains two nitrogen atoms that 

increase the overall energy content of the molecule. 

 

Scheme 3. Synthesis of HMTD. 

 The X-ray crystal structure was obtained by Schaefer,71 which confirmed the 

bond connectivity. Nitrogen atoms are on a threefold axis and have a surprising planar 

geometry.35 The crystal structure is a 50:50 racemic mixture of the left-handed and 

right-handed enantiomers.72 There is a considerable ring strain in HMTD, unlike TATP 

or DADP.35 The O–O bond lengths of HMTD are 1.456(8) Å and are shorter than TATP, 

DADP, and H2O2.71 The crystalline density of HMTD (1.597 g/cm3) is higher than TATP 

(1.272 g/cm3).35 Intermolecular interactions are not well defined due to the disorder in 

the crystal structure of HMTD. 

 The sensitivities and the measured and calculated energetic properties of HMTD 

are given in Table 5. It is a highly sensitive peroxide primary explosive with a moderate 

detonation velocity. The sensitivities can be reduced using it wet, as HMTD is not 

hygroscopic.35 Due to slow decomposition at room temperature it is not suitable for 

long-term storage.73 There is a considerable discrepancy between the calculated and 

observed detonation velocities. HMTD is another explosive that is extensively used by 

terrorists due to the ease of synthesis from widely available starting materials. 
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Table 5. Sensitivities and energetic properties of HMTD.6b,7,35,64,73 

Property HMTD 

IS (J) 0.6 

FS (N) 0.1 

ESDS (J) 0.0088 

ρ (g/cm3) 1.597 

 TDec (°C) 150 

ΔfH° (kJ/kg) –1731 

VDet (m/s) 4,500 

Calculated VDet (m/s) 7,777 

QDet (kJ/kg) –5,080 

V0 (L/kg) 813 

 

 The decomposition of HMTD has been studied by Oxley and the decomposition 

products were found to vary with the temperature. The major gaseous product was CO2 

below 150 oC and Me3N, H2O, and NH3 were also observed.73 At temperatures above 

160 oC, the major gaseous product was CO while HCN and MeOH have also been 

observed.  

1.5.3.4 MEKP 

MEKP is a colorless oil that consists of a mixture of products. It is synthesized by 

the acid catalyzed reaction of 2-butanone and H2O2 (Scheme 4).74 Milas et al. has 

successfully separated and characterized the components in the MEKP mixture.74a The 

major compound in the mixture is the linear dimer, 2-hydroperoxy-2-((2-

hydroperoxybutan-2-yl)peroxy)butane (45%) shown in Scheme 4.74a The other products 
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include a cyclic trimer (25%), monomer (10%), and acyclic oligomers with 3 (12%), 4 

(5%), 5 (2%), and 6 (1%) repeating units.74a The product mixture can be varied by 

changing the experimental conditions. Dilute solutions (30–60%) of MEKP have been 

employed as polymerization initiators, cross-linking agents, and curing agents in 

polymer industry. 

 

Scheme 4. Synthesis of MEKP. 

The sensitivities and the calculated energetic properties of MEKP are given in 

Table 6. It is a less studied explosive with respect to the other peroxide explosives 

TATP, DADP, and HMTD. MEKP is known to be highly sensitive but it is relatively less 

sensitive than TATP and has a moderate detonation performance. It has also been 

used in terrorist attacks due to the ease of synthesis from widely available starting 

materials.  

The decomposition of MEKP begins at low temperatures such as 30–32 °C. 

MEKP becomes explosive around 110 °C.75 It has been the cause for many explosive 

accidents in industry.35,75  
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Table 6. Sensitivities and calculated energetic properties of MEKP.35 

Property MEKP 

IS (J) High 

FS (N) High 

ESDS (J) High 

ρ (g/cm3) 1.17 

 TDec (°C) 75 

ΔfH° (kJ/mol) –372.4 

VDet (m/s) 5,200 

Calculated VDet (m/s) 6,191 

QDet (kJ/kg) –4,933 

V0 (L/kg) 991 

 

1.5.4 Development of Peroxo-Based HEDMs 

 The development of peroxo-based HEDMs needs to aim towards achieving two 

main goals: (i) a better energetic performance and (ii) lower sensitivities. A better 

energetic performance can be obtained by increasing the oxygen and nitrogen contents 

and increasing the crystalline densities. Lower sensitivities are challenging to obtain for 

peroxo-based compounds due to the presence of weak O–O bonds, which are also 

referred to as highly labile “trigger bonds” that render the peroxo-based compounds 

highly sensitive to impact and friction.76 Thus, strategies to stabilize these trigger bonds 

with the use of intra- and intermolecular interactions in the crystalline lattices need to be 

considered along with the general strategies to stabilize compounds towards impact, 

friction, and electrostatic discharge sensitivities.  
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1.5.4.1 Towards Better Performing Peroxo-Based HEDMs 

 Increasing the oxygen and nitrogen content of peroxo-based compounds needs 

to be systematically carried out since high oxygen and nitrogen contents may render 

unsafe highly sensitive compounds. The highest O:C ratio obtained for peroxo-based 

compounds is 4:1.77 There are a few peroxo-based compounds with 2:1 O:C ratios as 

well.78 These peroxo-based compounds with high O:C ratios are shown in Figure 10. 

 

 

Figure 10. Peroxo-based compounds with high O:C ratios. 

 

Dihydroperoxymethane, with a 4:1 O:C ratio, is explosive when concentrated, 

and it has only been detected as one of the products of ozonolysis of ethene.77 

Hydroperoxymethane is employed as an oxidant in organic reactions and it is known as 

a highly unstable compound that is not useful for HEDM applications.78a 2,3,5,6-

Tetrahydroperoxypiperazine has only been isolated as a disolvate dihydrate, and thus, it 

is unsuitable for use as a HEDM.78b 1,1-Dihydroperoxyethane is an oil, referred to as 
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“remarkably stable” by Hamann et al. since it is stable at room temperature for a few 

days, and at –20 °C for several weeks.78c Unfortunately, sensitivities and the energetic 

properties of 1,1-dihydroperoxyethane have not been studied. The maximum peroxy 

oxygen content that can be safely incorporated onto peroxo-based compounds for their 

practical use is yet to be discovered.  

Addition of nitrogen also increases the endothermicity and the detonation 

performance. Nitro groups or nitrogen rich heterocycles can be used to increase the 

nitrogen content of peroxo-based compounds. Nitro groups have been employed from 

the beginning of HEDM syntheses.4 Several nitrogen-rich heterocyclic compounds are 

currently popular as HEDMs.79 These new nitrogen-rich peroxo-based compounds can 

be potentially useful HEDMs, but unfortunately, they might result in less greener 

materials due to the release of nitrogen oxides to the environment. 

The crystalline densities can be increased by increasing the crystal packing 

efficiency, cocrystallization, using zwitterionic forms, and incorporating halogens or nitro 

groups.2,17,68 Since peroxo-based compounds have not been systematically studied as 

HEDMs no attempts have been made to synthesize compounds with high crystalline 

densities. 

1.5.4.2 Towards Low-Sensitivity Peroxo-Based HEDMs 

The causes of impact, friction, and electrostatic discharge sensitivities have not 

been clearly identified yet. Compounds with high oxygen contents like nitroglycerin and 

lower molecular weight peroxo-based compounds have been reported as highly 

sensitive compounds to impact and friction.4,76,80 The oxygen balance needs to be as 

high as possible for a more complete oxidation, but safety is important for practical use. 
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Thus, there is a limit for the maximum oxygen content that can be safely incorporated 

onto peroxo-based compounds. Increasing the nitrogen content using nitro groups or 

nitrogen rich heterocycles have been carried out without increasing the impact and 

friction sensitivities as much as increasing the oxygen content.2,79 Thus, it is safer to 

increase the endothermicity by using both oxygen and nitrogen. 

Crystalline defects and voids create hot spots in the crystalline lattice where the 

physical energy is transferred to the material, generating shock waves.14 Thus, crystals 

with more defects or lower quality crystals are more susceptible for initiation by impact, 

friction, and electrostatic discharge. The extremely high sensitivities of the known 

peroxo-based explosives are due to the weak O–O trigger bonds that are not sufficiently 

stabilized in the crystalline lattice with strong intra- or intermolecular interactions.76 Most 

HEDMs lack hydrogen bond donor groups and thus, they lack strong hydrogen bonding 

interactions. One advantageous feature of peroxo-based compounds such as 

hydroperoxides and peroxy acids is that they can form strong intra- and/or 

intermolecular hydrogen bonds, increasing the stability and reducing the sensitivities. 

Intramolecular hydrogen bonds are shown to be stronger than intermolecular hydrogen 

bonds.81  2,4,6-Triamino-1,3,5-trinitrobenzene (TATB, Figure 11) is one of the least 

sensitive compounds due to the presence of strong intramolecular hydrogen bonds 

between the alternating amino and nitro groups as well as intermolecular hydrogen 

bonds.82 Oxygen-rich HEDMs can also have O···O and H···H interactions in the solid 

state that can stabilize the trigger bonds by 3–16 kJ/mol.83 The stabilizing effect of 

multiple O···O interactions are cumulative in the solid state, which can assist in reducing 

the sensitivities of peroxo-based compounds. Recently, cocrystallization has been 
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shown as an efficient method to reduce the sensitivities of DADP by employing 

stabilizing I···O close contacts.68b 

 

 

Figure 11. Structure of TATB. 

 

The presence of large π-systems and π–π stacking facilitated by intermolecular 

hydrogen bonds are described as important causes to reduce sensitivities.84 Crystals 

that contain face-to-face π–π stacking provide the most insensitive compounds.84 The 

use of π–π stacking interactions to gain less sensitive aromatic peroxo-based 

compounds could be a useful strategy. The presence of slip planes in the crystal 

structures where the stacked molecular layers can move with respect to one another 

can efficiently dissipate energy, rendering low sensitivity compounds.81 Face-to-face π–

π stacking provides the least steric hindrance for the sliding movement and thus, results 

in low impact sensitivities. However, to form face-to-face π–π stacking interactions, 

electron rich and electron poor aromatic rings are required. This can be only achieved 

by cocrystallization of aromatic peroxo-based compounds. 

Unfortunately, only a little is understood about how these solid state 

characteristics affect the physical properties of the compounds and the predictability of 

the resultant properties is low. Also, multiple factors may simultaneously contribute to 
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the overall sensitivities and thus, it becomes a challenging process to control the final 

outcomes. 

1.5.5 Peroxo-Based Sub-Classes for HEDM Design 

Ozonides are the most reactive sub-class of organic peroxides, which are 

intermediates of ozonolysis reactions but are rarely isolated due to their low stability.85 

Thus, ozonides are hardly suitable candidates for the applications as HEDMs due to 

difficulty in handling. Most diacyl peroxides and peroxydicarbonates are unstable at 

room temperature and hence, they are also less useful for HEDMs.39 Dialkyl peroxides, 

hydroperoxides, peroxy esters, and peroxy acids are the more thermally stable sub-

classes of peroxo-based compounds suitable for HEDM applications.39 Dialkyl 

peroxides and peroxy esters are used as radical initiators in industry.86,87 

Hydroperoxides are mainly used as oxidizing or reducing agents and for syntheses of 

other peroxides.39 Peroxy acids are powerful oxidizing agents and are used for 

epoxidation reactions in both academia and in industry. Peroxy acids or peroxy acid 

precursors are also used as bleaching agents, disinfectants, and fungicides.39 

tert-Butyl hydroperoxide is readily available as a synthetic reagent, which is 

cheap and widely used as an oxidant. It is stable and fairly safe in 30–80% solutions of 

long chain hydrocarbons (nonane or decane) or as aqueous solutions. Thus, tert-butyl 

hydroperoxide can be efficiently used to synthesize tert-butyl peroxides and tert-butyl 

peroxy esters in place of dialkyl peroxides and peroxy esters, respectively. Hydrogen 

peroxide required for the synthesis of hydroperoxides and peroxy acids is also a cheap 

oxidant sold as 30–50 wt.% aqueous solutions. Thus, the categories of peroxo-based 
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compounds that can be conveniently used for HEDM design are tert-butyl peroxides, 

tert-butyl peroxy esters, hydroperoxides and peroxy acids (Figure 12). 

 

 

Figure 12. Categories of peroxo-based compounds for HEDM design. 

 

Sensitivities and energetic properties of tert-butyl peroxides, tert-butyl peroxy 

esters, hydroperoxides, and peroxy acids need to be assessed. These properties could 

be related to the structural, physical, and chemical properties to understand more about 

their function. Then, low-sensitivity, high-performing peroxo-based oxygen-rich 

compounds could be developed for potential use as greener HEDMs. 

1.5.6 Limitations of Peroxo-Based Compounds 

 There are multiple limitations in need of consideration for peroxo-based 

compounds. Peroxo-based compounds with high peroxy O:C ratios are known to be 

extremely sensitive to impact and friction. The known peroxide explosives TATP, DADP, 

MEKP, and HMTD have low oxygen balance values (Table 7), but they are highly 

sensitive compounds owing to the instability of the weak O–O trigger bonds. The high 

sensitivities that result with high peroxy oxygen contents limits the amount of oxygen 

and hence, the energy content that can be safely incorporated into peroxo-based 

compounds. An alternative way to incorporate more oxygen atoms to increase the 

oxygen balance is the use of more stable functional groups like nitro and hydroxyl 

groups.  
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Table 7. Oxygen balance values of peroxo-based explosives. 

Compound Ω (%) 

TATP –151 

DADP –151 

HMTD –92 

MEKP (dimer) –145 

 

One of the major limitations of most of the peroxo-based compounds is the low 

thermal stabilities. This is highly disadvantageous when HEDM applications are 

considered. Unfortunately, it is an inherent property of peroxo-based compounds to be 

thermally sensitive due to the weak and highly labile O–O bonds.39 Through more 

careful synthetic manipulations, more thermally stable peroxy acids need to be obtained 

for use as HEDMs.  

Peroxo-based compounds are usually incompatible with most acids, bases, 

metals, metal salts, and dust particles. Since HEDMs need to be prepared as 

formulations combining different chemical species, it is a highly disadvantageous 

property of peroxo-based compounds. The known peroxide explosives TATP, DADP, 

MEKP, and HMTD have been studied in various formulations,63 but more research 

needs to be carried out to find appropriate formulations to obtain reliable detonation 

responses from peroxo-based compounds. 
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1.6 Thesis Problem 

One of the main aspects of HEDM design is to explore greener alternatives for 

widely used HEDMs that produce toxic byproducts. Primary explosives LA, LS, and MF 

contain heavy metals that cause heavy metal poisoning. NH4ClO4 is an energetic 

oxidant widely used in propellant and explosive formulations. Leaching of it into 

groundwater has resulted in accumulation and hence, in human exposure to ClO4– ion. 

The size similarity of ClO4– ion to iodide ion results in a competition in the thyroid gland, 

which causes disruptions of many metabolic pathways and even thyroid cancer. Many 

research efforts are currently carried out to find replacements for the toxic primary 

explosives and NH4ClO4 with little success. Thus, there is a need for greener HEDMs.  

Peroxo-based oxygen-rich compounds are proposed as a potential new class of 

greener HEDMs due to the evolution of CO2 and/or CO, H2O, and O2 as the main 

decomposition products. Currently, TATP, DADP, MEKP, and HMTD are the only well-

studied highly energetic peroxides, but due to their high impact and friction sensitivities 

handling of these compounds has been hazardous. Thus, they have not found practical 

applications both as civilian or military HEDMs and the progress of research in this field 

has been hindered. Unfortunately, TATP, DADP, MEKP, and HMTD have been used in 

multiple terrorist attacks. For practical use as HEDMs, high impact and friction 

sensitivities of peroxo-based compounds need to be reduced. Further, improvements in 

detonation performances, thermal stabilities, and chemical compatibilities of the new 

peroxo-based compounds are important for their use as HEDMs.  

The peroxo-based compounds need to be systematically studied to explore the 

maximum possible oxygen contents that can be safely incorporated onto peroxo-based 
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compounds, their sensitivities and energetic properties, and paths to gear towards safer 

less sensitive peroxo-based compounds for practical use as greener HEDMs.  A 

complete sensitivity and energetic property study of peroxo-based compounds can 

ensure safety in numerous current applications as well as assist in gaining insights 

about developing peroxo-based oxygen-rich compounds with better performances for 

potential applications as greener HEDMs.   
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CHAPTER 2 

Synthesis, Characterization, and Study of the Sensitivities and Energetic 

Properties of tert-Butyl Peroxides 

2.1 Introduction 

2.1.1 Dialkyl Peroxides 

tert-Butyl peroxides are one of the common categories of peroxo-based 

compounds that belong to the main peroxide sub-class of dialkyl peroxides. Dialkyl 

peroxides have the basic R1OOR2 formula, where the R1 and R2 groups can be the 

same or different primary, secondary, or tertiary alkyl groups. Synthesis of dialkyl 

peroxides is carried out with hydroperoxides (using aldehydes, ketones, and alkyl 

halides), hydrogen peroxide (using alkyl halides), and sodium peroxide (using alkyl 

halides).39,86 Dialkyl peroxides are fairly thermally stable compounds. The 10 h half life 

temperatures range from 110–135 °C for acyclic peroxides and approach 200 °C for 

five- to six-membered cyclic peroxides.39 The O–O bond in dialkyl peroxides is thermally 

and photolytically cleaved into alkoxy radicals more easily with respect to the 

hydroperoxides, which can be attributed to the relatively higher stability of the two 

alkoxy radicals produced. Thus, they are commonly employed as cross-linking agents 

and radical initiators in industry.86 

TATP and DADP are two well-known highly energetic dialkyl peroxides.35,36 

Sensitivities and energetic properties of TATP and DADP have been discussed in 

Chapter 1. Low molecular weight dialkyl peroxides are often reported to be shock 

sensitive whereby the sensitivity decreases with increased molecular weight.86 High 

temperature distillations should be avoided with low molecular weight dialkyl peroxides 
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for safety reasons. Polymeric alkyl peroxides are reported as highly sensitive to impact 

and friction stimuli and explosive at elevated temperatures.88 

2.1.2 tert-Butyl Peroxides 

 A wide variety of tert-butyl peroxides have been reported in literature.89 They are 

common due to the wide availability of the cheap and stable synthetic reagent required 

for their syntheses, tert-butyl hydroperoxide. They are primarily used as cross-linking 

agents, polymerization initiators, and reagents in various organic syntheses.86,90 

Generally, they are stable carbon-rich compounds that can be handled safely. Di-tert-

butyl peroxide is the only tert-butyl peroxide that has been considered as a potential fuel 

(Figure 13). 

 

 

 

Figure 13. Di-tert-butyl peroxide. 

 

 Di-tert-butyl peroxide was tested as a fuel in an internal combustion engine 

under anaerobic conditions due to its ability to undergo a thermal explosion.91 It has 

also been used as a polymerization initiator.92a The thermal decomposition of di-tert-

butyl peroxide has been studied to assess its hazardous nature to ensure safety.92  

In this chapter, the synthesis, characterization, and the energetic properties of a 

series of tert-butyl peroxides 1–15 (Figure 14) are described. The tert-butyl peroxides 

synthesized in this study have O:C ratios in the range of 0.22–0.36. The ring strain of 

tert-butyl peroxides was varied using 5–7 membered rings and a bicyclopentane ring 
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system (11 and 13). Preliminary qualitative sensitivity tests were performed to observe 

their sensitivities to flame, impact, friction, and electrostatic discharge stimuli.  

 

 

Figure 14. The series of tert-butyl peroxides 1–15. 



www.manaraa.com

42 
 

 

2.2 Results and Discussion 

tert-Butyl peroxides 1–15 were synthesized to observe the effects of the 

increased oxygen content and ring strain on their energetic properties. Based on the 

synthetic design, carbon-rich safe tert-butyl peroxides were initially synthesized and 

then, more oxygen-rich compounds were obtained. Strain in the cyclic compounds 

increase in the order: cyclohexane (0.1 kcal/mol) < cycloheptane (6.2 kcal/mol) ≤ 

cyclopentane (6.2 kcal/mol).93 Since the energetic calculations require crystalline 

densities, only solid compounds can be energetically characterized in our study. 

Cyclopentane ring-based tert-butyl peroxides 7, 9, and 10 were oils, and thus, the solid 

tert-butyl peroxides 11 and 13 were synthesized to observe the effects of the ring strain. 

Compounds 11 and 13 have a highly strained (12.0 kcal/mol) octahydropentalene ring 

system.94 Aromatic compounds 3, 8, and 12 were synthesized to observe the effects of 

π-interactions on the stabilities and sensitivities of tert-butyl peroxides.  

2.2.1 Synthetic Aspects 

Caution: Oxygen-rich organic peroxo-based compounds are potentially 

explosive and require handling with care. Reactions and other manipulations were 

performed in a fume hood behind a blast shield. Personal safety gear was used 

whenever necessary: a face shield, leather gloves, and a leather apron. Interactions 

with strong acids, metals, metal salts, or easily oxidizable species were avoided to 

prevent hazardous decomposition reactions. All reactions were performed on small 

scales (≤ 500 mg) and at room temperature.  

The syntheses of tert-butyl peroxides were carried out based on a published 

general procedure for geminal tert-butyl peroxides from aldehydes and ketones 
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(Scheme 1).95 Compounds 1 and 3 were synthesized based on the exact published 

procedures.95 Iodine was the preferred catalyst due to the low cost, safety, and high 

efficiency observed in the reactions.95 CH3CN was able to dissolve iodine, tert-butyl 

hydroperoxide, and the starting material aldehydes and ketones allowing reactions to 

proceed effectively. 

 

Scheme 5. Synthesis of tert-butyl peroxides. 

 Briefly, a solution of I2 in CH3CN was treated with tBuOOH in decane while the 

reaction was kept stirring at room temperature (23 °C). Then, the aldehyde or ketone 

was added and the reaction was stirred at room temperature (23 °C) for 24 h. 

Afterwards, the reaction was concentrated under reduced pressure and the product was 

purified by silica gel column chromatography. During the synthesis of different tert-butyl 

peroxides, slight variations of the general procedure in the reaction scale, equivalents of 

tBuOOH per ketone/aldehyde group, reaction time, volume of CH3CN, and the 

chromatography mobile phase were required to obtain better yields. 

tert-Butyl peroxides 1–15 were obtained in low to moderate yields (Figure 14). 

Compounds 2, 7, and 10–15 are new tert-butyl peroxides obtained in this study. tert-

Butyl peroxides 2–4, 6, 7, 9, 10, and 14 were isolated as colorless oils while 1, 5, 8, 11–

13 and 15 were isolated as white solids. Compound 8 is the half reacted product of the 

reaction between terephthalaldehyde and tBuOOH while compound 12 is the product of 

the complete reaction. The solid tert-butyl peroxides and the oil 3 were re-crystallized to 

obtain X-ray quality single crystals either by slow evaporation (11, 13, and 15) or by 
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cooling the saturated solutions to –29 °C in the freezer (1, 3, 5, and 8). All tert-butyl 

peroxide single crystals obtained were colorless. They were in the forms of thick 

needles (1, 5, and 15), cubes (3), planar polygons (8 and 11) or thin planar needles 

(13). tert-Butyl peroxide syntheses using cyclobutanone, benzene-1,3,5-

tricarbaldehyde, cyclohexane-1,3,5-trione, and cyclohexane-1,2,3,4,5,6-hexaone were 

not successful. The highest O:C ratio obtained for the series of tert-butyl peroxides was 

0.36 for 15.  

tert-Butyl peroxides 1–15 were characterized by 1H and 13C NMR spectroscopy, 

mass spectrometry, melting point analysis, and IR spectroscopy. When possible, X-ray 

crystal structures were obtained for complete characterization of the corresponding tert-

butyl peroxides.  

2.2.2 Spectroscopy 

The 13C NMR peaks of the two carbon atoms connected to the O–O group, the 

peroxy carbon peak and the quaternary carbon peak of the tert-butyl group were used 

to confirm that a tert-butyl peroxide was obtained versus a decomposed tert-butoxy 

alkane. The chemical shift region for the peroxy carbon atoms of tert-butyl peroxides in 

CDCl3 was 107.00–118.52 ppm. The more deshielded chemical shifts were obtained for 

the strained cyclopentane ring-based tert-butyl peroxides 7, 9–11, and 13. The 

quaternary carbon peak of the tert-butyl group was in the chemical shift range of 79.08–

81.65 ppm. When a tert-butyl peroxide was decomposed to a tert-butoxy alkane, both 

the peroxy carbon peak and the quaternary carbon peak of the tert-butyl group were 

shifted to higher field approximately by 10 ppm.  
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The characteristic IR stretching frequencies of the tert-butyl peroxides are 

medium CH3 antisymmetric and symmetric stretching modes in the range of 2850–3000 

cm–1, medium or strong C–O stretching modes in the range of 1000–1300 cm–1, and 

weak O–O stretching modes in the range of 800–900 cm–1.96,97,98 There were multiple 

medium and strong peaks in the regions of 2850–3000 and 1000–1300 cm–1 in the IR 

spectra of 1–15 for CH3 stretching modes and C–O stretching modes, respectively. The 

appearance of strong peaks in the range of 800–1000 cm–1 in the IR spectra of 1–15 

were indicating strong coupling of C–O and O–O stretching modes as reported.96,98   

2.2.3 X-Ray Crystal Structures 

X-ray crystal structures were obtained for the tert-butyl peroxides 1, 3, 5, 8, 11, 

13, and 15. They were all normal structures without unusual intermolecular interactions. 

Experimental crystallographic data of 1, 3, 5, 8, 11, 13, and 15 are summarized in Table 

8. Perspective views of the crystal structures of 1, 3, 5, 8, 11, 13, and 15 are given in 

Figures 15–21. Selected bond lengths from the X-ray crystal structures are provided in 

Table 9. A list of short contacts generated by Mercury 3.5.1 is provided in Table 10. 

The O–O bond lengths of the tert-butyl peroxides 1, 3, 5, 8, 11, 13, and 15 were 

in the range of the O–O bond lengths reported for dialkyl peroxides.99  tert-Butyl peroxy 

groups are bulky, which prevent close packing of the tert-butyl peroxide molecules. 

Thus, low crystalline densities were obtained for the tert-butyl peroxides 1, 3, 5, 8, 11, 

13, and 15. Their crystalline densities were in the range of 1.098–1.166 g/cm3. 
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Table 8. Experimental crystallographic data of 1, 3, 5, 8, 11, 13, and 15. 

 1 3 5 8 11 13 15 

Formula C18H36O4 C15H24O4 C15H30O4 C15H22O4 C104H200O32 C24H46O8 C11H22O4 

FW 316.47 268.34 274.39 266.32 1962.63 462.61 218.28 

Space group P 1 21/n 1 P 1 21/c 1 P 1bar C 1 c 1 P 1bar P 1 21/n 1 P 1bar 

a (Å) 6.1941(3)  14.4700(8) 8.7498(6) 10.0753(13) 14.7212(19) 18.6961(10) 6.0500(3) 

b (Å) 35.6020(17)  9.8681(5) 9.8051(7) 14.7595(13) 16.079(2) 6.0942(3) 8.6910(5) 

c (Å) 8.7033(4) 11.4505(6) 10.6228(7) 11.1230(11) 26.271(3) 24.4347(13) 13.0548(7) 

V (Å3) 1913.79(16)  1528.86(14) 811.77(10) 1653.7(3) 5752.6(13) 2678.0(2) 643.92(6) 

Z 4 4 2 4 2 4 2 

T (K) 100(2)  100(2) 100(2) 100(2) 100(2) 100(2) 100(2) 

λ (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 

ρcalc (g/cm3) 1.098 1.166 1.123 1.070 1.133 1.147 1.126 

μ (mm–1) 0.075 0.083 0.079 0.076 0.082 0.084 0.084 

R(F)a (%) 3.81 7.77 3.67 3.77 8.80 3.89 4.12 

Rw(F)b (%) 14.26 21.95 15.13 11.45 24.02 10.56 12.56 

aR(F) = ∑║Fo│–│Fc║ ⁄ ∑│Fo│; bRw(F) = [∑w(Fo2 - Fc2)2/∑w(Fo2)2]1/2.
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Figure 15. Perspective view of 1 with thermal ellipsoids at the 50% probability level. 
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Figure 16. Perspective view of 3 with thermal ellipsoids at the 50% probability level. 
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Figure 17. Perspective view of 5 with thermal ellipsoids at the 50% probability level. 
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Figure 18. Perspective view of 8 with thermal ellipsoids at the 50% probability level. 
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Figure 19. Perspective view of 11 with thermal ellipsoids at the 50% probability level. 
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Figure 20. Perspective view of 13 with thermal ellipsoids at the 50% probability level. 
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Figure 21. Perspective view of 15 with thermal ellipsoids at the 50% probability level.
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Table 9. Selected bond lengths (Å) of 1, 3, 5, 8, 11, 13, and 15. 

Bond 1 3 5 8 11 13 15 

O–O 1.4758(7) 1.4631(7) 1.4749(4) 1.481(2) 1.483(6) 1.4777(8) 1.4751(5) 

 1.4746(7) 1.4745(6) 1.4742(4) 1.470(2) 1.480(6) 1.4798(8) 1.4758(4) 

     1.472(6) 1.4803(8)  

     1.485(6) 1.4786(8)  

C=O    1.213(4)    

C–O 1.4184(9) 1.4024(7) 1.4468(5) 1.444(3) 1.462(8) 1.4479(11) 1.4435(6) 

 1.4198(9) 1.4131(7) 1.4192(5) 1.409(3) 1.412(7) 1.4224(10) 1.4140(5) 

 1.4483(9) 1.4488(7) 1.4260(5) 1.452(3) 1.476(8) 1.4120(10) 1.4159(5) 

 1.4507(9) 1.4572(8) 1.4431(5) 1.411(3) 1.422(7) 1.4505(10) 1.4429(5) 

     1.462(8) 1.4464(10)  

     1.416(7) 1.4198(9)  

     1.423(7) 1.4036(10)  

     1.457(7) 1.4447(10)  

C–C (bridge)     1.565(9) 1.5708(11)  
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Table 10. The list of short contacts of 1, 3, 5, 8, 11, 13, and 15. 

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

1 1 H12 O2 2.678 –0.042 

 2 H19 H24 2.385 –0.015 

3 1 H14C H13C 2.34 –0.06 

5 1 H22 H22 2.323 –0.077 

8 1 H22 O4 2.658 –0.062 

 2 C15 H7 2.881 –0.019 

 3 H17A H6 2.4 0 

 4 O2 H17 2.586 –0.134 

 5 O2 H20 2.466 –0.254 

11 1 H27 H137 2.367 –0.033 

 2 H34 C53 2.888 –0.012 

 3 H34 H120 2.35 –0.05 

 4 H88 H126 2.399 –0.001 

 5 H97 H113 2.314 –0.086 

 6 H51 H169 2.387 –0.013 

 7 H184 H190 2.394 –0.006 

 8 H186 H186 2.307 –0.093 

13 1 O7 H14 2.699 –0.021 

 2 C6 H35 2.843 –0.057 

 3 H8 H43 2.327 –0.073 

 4 C10 H12 2.878 –0.022 

 5 H36 C13 2.759 –0.141 

 6 H10 H33 2.322 –0.078 

 7 H34 H34 2.179 –0.221 

15 1 C4 H21 2.768 –0.132 

 2 H20 O4 2.642 –0.078 
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 The X-ray crystal structures of tert-butyl peroxides 1, 3, 5, 8, 11, 13, and 15 lack 

strong hydrogen bonds. Their intermolecular interactions are mainly weak C–H···O 

hydrogen bonds, C···H and H···H contacts, and π-interactions of 3 and 8 (Table 10). 

The strengths of C–H···O interactions are in the range of 5–10 kJ/mol.100 These weak 

C–H···O interactions (H···O: 2.466–2.699 Å) are present in 1, 8, 13, and 15. Based on 

the theoretical calculations by Platts, the strengths of C···H interactions can be up to 35 

kJ/mol.101 There are C···H interactions (2.759–2.888 Å) in the crystal structures of tert-

butyl peroxides 13 and 15. Short H···H contacts (2.179–2.4 Å) are the most common 

type of intermolecular interactions that are present in all of the X-ray crystal structures of 

1, 3, 5, 8, 11, 13, and 15. They can exert stabilization energies up to 10 kcal/mol.102 The 

X-ray crystal structures of 3 and 8 contain π–π and C–H···π interactions, respectively.  

The calculated intermolecular interaction energies of π-interactions are in the range of 

1.48–2.48 kcal/mol.103 The highest crystalline density was obtained with the aromatic 

tert-butyl peroxide 3, which may be due to the presence of π–π interactions. 

2.2.4 Thermal Stability  

 Thermal stabilities of tert-butyl peroxides were assessed using thermogravimetry 

(TGA/DTA). Representative TGA/DTA curves for 1 and 15 are shown in Figure 22 and 

Figure 23, respectively. The decomposition temperatures (TDec) of tert-butyl peroxides 

1–15 are provided in Table 11. Decomposition temperatures of tert-butyl peroxides were 

in the range of 110–140 °C. They are fairly thermally stable peroxo-based compounds.  
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Figure 22. Representative TGA (blue) and DTA (red) curves for 1. 

 

 

Figure 23. Representative TGA (blue) and DTA (red) curves for 15. 
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Table 11. Decomposition temperatures of 1–15. 

Compound TDec (°C) 

1 130 

2 110 

3 135 

4 120 

5 110 

6 110 

7 105 

8 140 

9 120 

10 120 

11 110 

12 140 

13 120 

14 125 

15 140 

 

 The most thermally stable tert-butyl peroxides were the aromatic tert-butyl 

peroxides 3, 8, 12, and 15. The higher thermal stability of aromatic tert-butyl peroxides 

might be due to the presence of conjugated rings and π-interactions. The thermal 

stabilities of tert-butyl peroxides 1–15 are still low for most HEDM applications, which 

require the decomposition temperatures to be ≥ 150 °C.2 
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2.2.5 Preliminary Qualitative Sensitivity Tests 

 All tert-butyl peroxides 1–15 deflagrated upon burning in a Bunsen burner flame, 

indicating slow material decomposition kinetics.  There were only slight variations in the 

flame responses with the increasing oxygen content and ring strain. Compounds 7, 9–

11, and 13–15 produced large, bright yellow flames and were more sensitive and 

energetic than the rest of the tert-butyl peroxides. Cyclopentane ring-based peroxides 7, 

9, and 10 were all relatively high in sensitivity and the most sensitive rapid flame 

responses were observed with 11 and 13 that contain the strained octahydropentalene 

rings. The higher sensitivities of 7, 9–11, and 13–15 can be attributed to the higher 

oxygen content and ring strain. The aromatic tert-butyl peroxides 3, 8, and 11 were the 

lowest in sensitivity based on their slow flame responses. 

 tert-Butyl peroxides 1–15 were also not sensitive to impact, friction, or 

electrostatic spark based on the absence of responses in hammer impact tests, sand 

paper friction tests, and Tesla coil electrostatic spark tests. Thus, tert-butyl peroxides 1–

15 can be described as peroxo-based compounds that are safe to handle. No further 

standard sensitivity measurements or energetic calculations were performed since the 

low energetic performances of tert-butyl peroxides 1–15 were inadequate for their 

development as HEDMs.  

2.3 Conclusions 

 tert-Butyl peroxides 1–15 were synthesized and fully characterized to study their 

sensitivities as well as their energetic properties. X-ray crystal structures were obtained 

for 1, 3, 5, 8, 11, 13, and 15 to confirm the bond connectivity. Their crystalline densities 

are low for HEDM applications and are in the range of 1.098–1.166 g/cm3. Compounds 
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1–15 are fairly thermally stable compounds with decomposition temperatures in the 

range of 110–140 °C, which are still low for most HEDM applications. All of the tert-butyl 

peroxides deflagrated upon burning due to their slow decomposition kinetics. Slightly 

higher sensitivities were observed with increasing oxygen content and ring strain of 1–

15. They were also not sensitive to impact, friction, or electrostatic spark based on the 

preliminary sensitivity tests. Hence, tert-butyl peroxides 1–15 are fairly safe peroxo-

based compounds to handle. These low sensitivities of tert-butyl peroxides are 

advantageous for their use in industry as polymerization initiators. 

2.4 Experimental Section 

 General Considerations: All the reactions for the synthesis of organic peroxides 

were carried out under ambient conditions (room temperature and non-inert 

atmosphere). Chemicals were purchased from Sigma-Aldrich, Acros Organics, EMD, or 

Alfa Aesar and were used without further purifications. ACS grade solvents from EMD 

and Fisher Scientific were used for the reactions, purifications, and re-crystallizations as 

obtained. Petroleum ether used in the synthetic protocols was with a boiling point range 

of 35–60 °C. A solution of 5.5 M tBuOOH in decane (Sigma-Aldrich) was used for the 

synthesis of the tert-butylperoxides. Synthesis of tert-butyl peroxides were carried out 

based on a published general procedure.95 Compounds 1 and 3 were synthesized 

based on published procedures.95 

 Silica gel 60, 230–400 mesh (EMD Chemicals) was used to perform silica gel 

column chromatography.104 ASTM TLC plates precoated with silica gel 60 F254 (250 μm 

layer thickness) were used for thin-layer chromatography (TLC). TLC spots were 

observed using a UV lamp and/ or a potassium permanganate solution (3 g KMnO4, 20 
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g K2CO3, 5 mL 5% w/v aqueous NaOH, 300 mL H2O), which was used as a stain and 

charring the KMnO4 stained TLC plates by a heat gun was carried out to visualize the 

spots. 

 1H and 13C{1H} NMR spectra were obtained from the Varian Mercury-400 (400 

MHz and 101 MHz) NMR spectrometer or  MR 400 (400 MHz and 101 MHz) NMR 

spectrometer, in CDCl3 as indicated and were referenced to the residual proton and 

carbon resonances of CDCl3: 1H: δ 7.27, 13C: δ 77.23. High-resolution mass spectra 

were obtained on an electrospray time-of-flight high-resolution Waters Micromass LCT 

Premier XE mass spectrometer. Infrared spectra were obtained from a Shimadzu 

MIRacle 10 IRAffinity-1 single reflection ATR accessory. Melting points were determined 

on an Electrothermal IA 9300 melting point apparatus and are uncorrected. The 

decomposition characteristics of organic hydroperoxides and tert-butylperoxides were 

studied by TGA and DTA, which were carried out with an SDT-2960 TGA/DTA 

instrument at a heating rate of 10 °C min−1. 

 Qualitative Sensitivity Tests: Sensitivity to heat, impact and an electrostatic 

discharge, were determined to study the effectiveness of the organic peroxides as 

peroxo-based oxygen-rich high energy dense oxidizers by (i) Burning about 3–5 mg of 

the compound in the Bunsen burner flame; (ii) Striking 3–5 mg of the compound on a 

metal plate with a hammer; and (iii) Providing 3–5 mg of the compound on a metal plate 

with an electrostatic discharge using an Electro Technic BD 10 tesla coil (120 V, 0.35 

A).  

 General Procedure for the Preparation of tert-Butylperoxides: A solution of I2 

(0.025 g, 0.100 mmol, 0.1 equivalents per ketone/aldehyde group) in CH3CN (1–1.5 mL) 
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was treated with 5.5 M tBuOOH in decane (0.36 mL, 2.0 mmol, 2 equivalents per 

ketone/aldehyde group) while the reaction was stirred at room temperature (23 °C). 

Afterwards, the ketone/aldehyde starting material (1 mmol of 

monoketone/monoaldehyde compound or 0.5 mmol of diketone/dialdehyde compound) 

was added and the reaction was stirred at room temperature (23 °C) for 24 h. Then, the 

reaction was concentrated under reduced pressure and the product was purified by 

silica gel column chromatography with 19:1 petroleum ether:diethyl ether. 

 Preparation of 4-(tert-butyl)-1,1-bis(tert-butylperoxy)cyclohexane (1). 

Compound 1 was prepared in 58% yield as a white solid by a literature procedure95 

starting from 4-(tert-butyl)cyclohexan-1-one: mp 49–51 °C (lit95 49.5–50.5 °C); IR (ν cm–

1): 2968 (s), 2935 (s), 2866 (m), 1652 (m), 1559 (m), 1364 (s), 1248 (m), 1191 (s), 1123 

(m), 1061 (s), 975 (m), 934 (s), 880 (s), 828 (w), 752 (m); 1H NMR (400 MHz, CDCl3, 23 

°C, δ):  2.34–2.26 (broad d, 2H, J = 12.0 Hz), 1.64–1.57 (broad d, 2H, J = 12.4 Hz), 

1.44–1.20 (m, 4H), 1.28 (s, 9H, CH3), 1.24 (s, 9H, CH3), 1.09–0.92 (m, 1H, CH), 0.86 (s, 

9H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 107.00 (peroxy C), 79.31 (C), 

79.11 (C), 47.66 (CH), 32.59 (C), 31.16 (CH2), 27.84 (CH3), 27.10 (CH3), 26.95 (CH3), 

23.67 (CH2); ESI-HRMS: calcd for [C18H36O4Na]+ 339.2511; found 339.2695. Long, 

thick, colorless, needle-like single crystals were grown by crystallization from petroleum 

ether at –29 °C.  

 Preparation of 1,1-bis(tert-butylperoxy)-4,4-dimethylcyclohexane (2). 4,4-

Dimethylcyclohexanone was treated with tBuOOH based on the general procedure on a 

3 times larger scale to obtain 0.153 g (18%) of 2 as a colorless oil. IR (ν cm–1): 2975 

(m), 2951(m), 2928 (m), 2868 (w), 1452 (m), 1362 (s), 1270 (m), 1241 (m), 1200 (s), 
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1178 (s), 1062 (s), 1029 (m), 949 (s), 880 (s); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  

1.82 (t, 4H, CH2), 1.34 (t, 4H, CH2), 1.26 (s, 18H, CH3), 0.92 (s, 6H, CH3); 13C{1H} NMR 

(101 MHz, CDCl3, 23 °C, ppm): 107.24 (peroxy C), 79.20 (C), 35.71(CH2), 29.94 (C), 

28.32 (CH3), 27.06 (CH2), 27.01 (CH3); ESI-HRMS: calcd for [C16H32O4Na]+ 311.2198; 

found 311.2548. 

 Preparation of (bis(tert-butylperoxy)methyl)benzene (3). Compound 3 was 

prepared in 35% yield as a colorless oil by a literature procedure95 starting from 

benzaldehyde: IR (ν cm–1): 3038 (w), 2979 (m), 2933(w), 1648 (w), 1453 (m), 1364 (s), 

1304 (w), 1244 (w), 1200 (s), 1086 (w), 1044 (m), 1002 (s), 918 (w), 900 (m), 875 (s), 

755 (s), 697 (s); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  7.52–7.43 (m, 2H, CH), 7.42–

7.34 (m, 3H, CH), 6.21 (s, 1H, CH), 1.30 (s, 18H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 

23 °C, ppm): 134.87 (C), 129.16(CH), 128.26 (CH), 127.33 (CH), 108.57 (peroxy CH), 

81.12 (C), 26.56 (CH3); ESI-HRMS: calcd for [C15H24O4Na]+ 291.1572; found 291.1805. 

Colorless cube-like single crystals were grown by crystallization from hexane at –29 °C. 

 Preparation of 1,1-bis(tert-butylperoxy)-4-methylcyclohexane (4). 4-

Methylcyclohexanone was treated with tBuOOH based on the general procedure on a 4 

times larger scale to obtain 0.490 g (45%) of a colorless oil. IR (ν cm–1): 2977 (m), 

2951(m), 2932 (m), 2861 (w), 1452 (m), 1363 (s), 1249 (m), 1198 (s), 1155 (m), 1098 

(m), 1047 (m), 1014 (m), 977 (s), 883 (s), 761 (w); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  

2.21 (d of m, 1H, J = 14.4 Hz, CH), 1.59–1.52 (m, 2H), 1.47–1.35 (m, 4H), 1.27 (s, 9H, 

CH3), 1.23 (s, 9H, CH3), 1.25–1.16 (m, 2H), 0.90 (d, 3H, J = 6.8 Hz, CH3); 13C{1H} NMR 

(101 MHz, CDCl3, 23 °C, ppm): 107.11 (peroxy C), 79.33 (C), 79.08 (C), 32.05 (CH), 
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31.26 (CH2), 30.55 (CH2), 27.08 (CH3), 26.93 (CH3), 21.96 (CH3); ESI-HRMS: calcd for 

[C15H30O4Na]+ 297.2042; found 297.2276. 

 Preparation of 1,1-bis(tert-butylperoxy)cycloheptane (5). Cycloheptanone 

was treated with tBuOOH based on the general procedure on a 4 times larger scale and 

the product was purified by silica gel column chromatography with hexanes and then 

30:1 hexanes:ethyl acetate to obtain 0.249 g (23%) of 5 as a white solid: mp 25–27 °C 

(lit105 25–27 °C); IR (ν cm–1): 2977 (m), 2927(m), 2859 (m), 1457 (m), 1386 (w), 1363 

(s), 1243 (m), 1196 (s), 1170 (m), 1111 (w), 1011 (s), 960 (w), 912 (m), 881 (s), 793 (w), 

760 (w); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  1.95–1.88 (m, 4H), 1.53 (s, 8H, CH2), 

1.24 (s, 18H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 112.60 (peroxy C), 

79.35 (C), 34.18 (CH2), 30.98 (CH2), 26.90 (CH3), 23.34 (CH2); ESI-HRMS: calcd for 

[C15H30O4Na]+ 297.2042; found 297.2231. Colorless, thick, needle-like single crystals 

were grown in hexanes at –29 °C. 

 Preparation of 1,1-bis(tert-butylperoxy)cyclohexane (6). Cyclohexanone was 

treated with tBuOOH based on the general procedure on a 5 times larger scale to obtain 

0.491 g (38%) of 6 as a colorless oil. IR (ν cm–1): 2977 (m), 2937(m), 2861 (w), 1449 

(m), 1362 (s), 1238 (m), 1198 (s), 1152 (m), 1090 (m) 1065 (s), 1029 (w), 942 (s), 886 

(s), 852 (w), 838 (w), 755 (w); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  1.82–1.73 (m, 4H), 

1.58–1.49 (m, 4H), 1.45–1.37 (m, 2H), 1.25 (s, 18H, CH3); 13C{1H} NMR (101 MHz, 

CDCl3, 23 °C, ppm): 107.11 (peroxy C), 79.13 (C), 31.04 (CH2), 26.99 (CH3), 25.92 

(CH2), 22.92 (CH2).  

 Preparation of 1,1-bis(tert-butylperoxy)-3-methylcyclopentane (7). 3-

Methylcyclopentanone was treated with tBuOOH based on the general procedure on a 
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3 times larger scale and the product was purified by silica gel column chromatography 

with hexanes and then 30:1 hexanes:ethyl acetate to obtain 0.234 g (30%) of 7 as a 

colorless oil. IR (ν cm–1): 2977 (m), 2956 (m), 2931 (m), 2870 (m), 1457 (m), 1385 (w), 

1363 (s), 1310 (w), 1241 (m), 1188 (s), 1149 (m), 1084 (w), 1022 (w), 977 (m), 928 (m), 

868 (m), 760 (m); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  2.24–2.16 (m, 1H), 2.14–2.02 

(m, 2H), 1.99–1.88 (m, 1H), 1.85–1.72 (m, 1H), 1.54–1.45 (m, 1H), 1.263 (s, 9H, CH3), 

1.259 (s, 9H, CH3), 1.34–1.08 (m, 1H), 1.00 (d, 3H, J = 6.8 Hz, CH3); 13C{1H} NMR (101 

MHz, CDCl3, 23 °C, ppm): 118.23 (peroxy C), 79.63 (C), 79.60 (C), 42.29 (CH2), 33.69 

(CH2), 33.42 (CH), 33.27 (CH2), 26.96 (CH3), 26.94 (CH3), 20.07 (CH3).  

 Preparation of 4-(bis(tert-butylperoxy)methyl)benzaldehyde (8). 

Terephthalaldehyde was treated with tBuOOH based on the general procedure on a 6 

times larger scale and the product was purified by silica gel column chromatography 

with 24:1 hexanes:ethyl acetate to obtain 0.167 g (19%) of 8 as a white solid: mp 45–47 

°C; IR (ν cm–1): 3026 (w), 2982 (m), 2931(m), 2866 (w), 1721 (s), 1697 (m), 1662 (w), 

1612 (w), 1416 (w), 1366 (m), 1261 (m), 1192 (s), 1171 (m), 1062 (s), 1101 (m), 955 (s), 

913 (m), 854 (s), 805 (m), 774 (s); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  10.04 (s, 1H, 

CH), 7.89 (d, 2H, J = 8.4 Hz, CH), 7.63 (d, 2H, J = 8.4 Hz, CH), 6.22 (s, 1H, CH), 1.28 

(s, 18H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 192.12 (C), 141.11 (C), 

136.83 (C), 129.78 (CH), 128.20 (CH), 107.56 (peroxy C), 81.65 (C), 26.64 (CH3); ESI-

HRMS: calcd for [C16H24O5Na]+ 319.1521; found 319.1453. Thin, colorless, plate-like 

single crystals were grown by crystallization from petroleum ether at –29 °C. 

 Preparation of 1,1-bis(tert-butylperoxy)cyclopentane (9). Cyclopentanone 

was treated with tBuOOH based on the general procedure on a 2 times larger scale to 
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obtain 0.142 g (29%) of 9 as a colorless oil. IR (ν cm–1): 2977 (m), 2934 (m), 2872 (w), 

1363 (m), 1185 (s), 1079 (m), 1017 (w), 975 (m), 866 (m), 758 (w); 1H NMR (400 MHz, 

CDCl3, 23 °C, δ):  1.98–1.92 (m, 4H, CH2); 1.69–1.64 (m, 4H, CH2), 1.26 (s, 18H, CH3); 

13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 118.50 (peroxy C), 79.64 (C), 33.82 (CH2), 

26.94 (CH3), 24.76 (CH2).  

 Preparation of 4,4-bis(tert-butylperoxy)cyclopent-1-ene (10). 3-Cyclopenten-

1-one was treated with tBuOOH based on the general procedure on a 3 times larger 

scale to obtain 0.217 g (30%) of 10 as a colorless oil. IR (ν cm–1): 3065 (w), 2977 (m), 

2929 (m), 2869 (w), 1620 (w), 1455 (w), 1364 (m), 1311 (m), 1235 (m), 1193 (s), 1074 

(s), 1037 (m), 958 (m), 867 (s), 783 (w), 759 (w); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  

5.60 (s, 2H, CH), 2.70 (S, 4H, CH2), 1.251 (s, 18H, CH3); 13C{1H} NMR (101 MHz, 

CDCl3, 23 °C, ppm): 127.74 (CH), 117.29 (peroxy C), 79.89 (C), 40.22 (CH2), 26.84 

(CH3); ESI-HRMS: calcd for [C13H24O4 + H]+ 245.1753; found 245.1754. 

 Preparation of 2,2,5,5-tetrakis(tert-butylperoxy)-cis-3,6-

dimethyloctahydropentalene (11). cis-1,5-Dimethylbicyclo[3.3.0]octane-3,7-dione was 

treated with tBuOOH based on the general procedure on a 6 times larger scale and the 

product was purified by silica gel column chromatography with 30:1 hexanes:ethyl 

acetate to obtain 0.098 g (10%) of 11 as a white solid: mp 88–90 °C; IR (ν cm–1): 2972 

(m), 2929 (m), 2868 (w), 1735 (w), 1454 (m), 1386 (w), 1362 (s), 1282 (w), 1192 (s), 

1153 (m), 1126 (m), 1081 (w), 1036 (s), 979 (m), 946 (w), 884 (s), 860 (s), 817 (w), 761 

(m); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  2.28 (d, 4H, J = 14.8 Hz), 1.93 (d, 4H, J = 

14.8 Hz), 1.27 (s, 36H, CH3), 1.00 (s, 6H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, 

δ ppm): 116.35 (peroxy C), 79.35 (C), 79.30 (C), 49.72 (C), 46.20 (CH2), 27.13 (CH3), 
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27.10 (CH3), 22.29 (CH3); ESI-HRMS: calcd for [C26H50O8Na]+ 513.3403; found 

513.3382. Colorless, polygonal single crystals were grown by slow evaporation in 

toluene. 

 Preparation of 1,4-bis(bis(tert-butylperoxy)methyl)benzene (12). 

Terephthalaldehyde was treated with tBuOOH based on the general procedure on a 6 

times larger scale using 4 equivalents of tBuOOH per ketone/aldehyde group and the 

product was purified by silica gel column chromatography with 24:1 hexanes: ethyl 

acetate to obtain 0.134 g (10%) of 12 as a white solid: mp 61–63 °C; IR (ν cm–1): 2978 

(m), 2931(m), 2870 (w), 1651 (w), 1457 (w), 1363 (m), 1243 (w), 1200 (s), 1093 (w), 

1042 (m), 999 (s), 915 (w), 879 (m), 860 (m), 825 (m), 756 (w); 1H NMR (400 MHz, 

CDCl3, 23 °C, δ):  7.45 (s, 4H, CH), 6.18 (s, 2H, CH), 1.28 (s, 36H, CH3); 13C{1H} NMR 

(101 MHz, CDCl3, 23 °C, ppm): 135.69 (C), 127.35 (CH), 108.37 (peroxy CH), 81.44 

(C), 26.66 (CH3); ESI-HRMS: calcd for [C24H42O8Na]+ 481.2777; found 481.2690. 

 Preparation of 2,2,5,5-tetrakis(tert-butylperoxy)octahydropentalene (13). cis-

Bicyclo[3.3.0]octane-3,7-dione was treated with tBuOOH based on the general 

procedure on a 4 times larger scale to obtain 0.183 g (19%) of 13 as a white solid: mp 

119–122 °C; IR (ν cm–1): 2981 (m), 2930 (m), 2874 (w), 1651 (m), 1363 (s), 1306 (m), 

1243 (m), 1194 (s), 1132 (s), 1085 (m), 1044 (m), 1000 (m), 971 (w), 893 (m), 877 (s), 

829 (w), 762 (w); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  2.69–2.56 (m, 2H, CH), 1.90 (d 

of d, 4H, J = 13.6 Hz, J = 8.4 Hz), 1.90 (d of d, 4H, J = 13.8 Hz, J = 6.0 Hz), 1.26 (s, 

18H, CH3), 1.25 (s, 18H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 118.52 

(peroxy C), 79.71 (C), 79.47 (C), 39.31 (CH), 38.97 (CH2), 27.01 (CH3), 26.94 (CH3); 
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ESI-HRMS: calcd for [C24H46O8Na]+ 485.3090; found 485.3088. Long, thin, planar, and 

colorless needle-like single crystals were grown by slow evaporation in toluene.  

 Preparation of 2,2,5,5-tetrakis(tert-butylperoxy)hexane (14). 2,5-Hexanedione 

was treated with tBuOOH based on the general procedure on a 2 times larger scale and 

the product was purified by silica gel column chromatography with 30:1 hexanes: ethyl 

acetate to obtain 0.087 g (20%) of 14 as a colorless oil. IR (ν cm–1): 2977 (m), 2933 (m), 

2865 (w), 1719 (m), 1454 (m), 1364 (s), 1245 (m), 1196 (s), 1108 (s), 970 (w), 910 (m), 

880 (s), 751 (m); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  2.21–2.03 (m, 4H, CH2). 1.52 (s, 

6H, CH3), 1.22 (s, 36H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 112.80 

(peroxy C), 79.36 (C), 35.96 (CH2), 26.83 (CH3), 23.42 (CH3); ESI-HRMS: calcd for 

[C22H46O8 + H]+ 439.3271; found 439.3551. 

 Preparation of 1,1,4,4-tetrakis(tert-butylperoxy)cyclohexane (15). 1,4-

Cyclohexanedione was treated with tBuOOH based on the general procedure on a 4 

times larger scale to obtain 0.257 g (29%) of 15 as a white solid: mp 137–139 °C; IR (ν 

cm–1): 2978 (m), 2929 (m), 2867 (w), 1362 (s), 1254 (m), 1196 (s), 1152 (w), 1082 (s), 

1024 (w), 1000 (m), 959 (s), 922 (m), 882 (s), 803 (m), 756 (w); 1H NMR (400 MHz, 

CDCl3, 23 °C, δ):  1.93 (s, 8H, CH2), 1.26 (s, 36H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 

23 °C, ppm): 106.94 (peroxy C), 79.43 (C), 27.25 (CH2), 26.94 (CH3); Large, thick, 

colorless, needle-like single crystals were grown by slow evaporation of in petroleum 

ether.  
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CHAPTER 3 

Synthesis, Characterization, and Study of Surprisingly Highly Energetic and Low 

Sensitivity tert-Butyl Peroxy Esters with Low Oxygen and Nitrogen Contents 

3.1 Introduction 

 tert-Butyl peroxy esters are one of the common categories of peroxo-based 

compounds. They have been extensively used in industry. tert-Butyl peroxy esters 

belong to the main peroxide sub-class of peroxy esters with a wide range of reactivity. 

3.1.1 Peroxy Esters 

 Peroxy esters have the basic R1C(O)OOR2 formula where the groups R1 and R2 

can be the same or different primary, secondary, or tertiary alkyl groups. They are 

commonly prepared from acid chlorides, anhydrides, and esters by reacting with alkyl 

hydroperoxides. Peroxy esters are also synthesized by the condensation of carboxylic 

acids with alkyl hydroperoxides using coupling agents such as 

dicyclohexylcarbodiimide.39 The 10 h half life temperatures of peroxy esters are in the 

range of 65–160 °C.39,106  

 They readily undergo homolytic cleavages thermally or photochemically to 

produce free radicals as shown by Equation 6, followed by decarboxylation of acyloxy 

radicals and β-scission of alkoxy radicals.39 Peroxy esters with tertiary or bulky alkyl 

peroxy esters tend to decompose into alkyl and alkoxy radicals along with CO2.39 Thus, 

they are most popular as radical initiators for free radical polymerization reactions. 

Peroxy esters can also undergo radical induced decompositions (Equation 7).106c 

      

             (6) 
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                                                  (7)  

                                                                                           
 
 
 Low molecular weight peroxy esters can produce violent decompositions at high 

concentrations and elevated temperatures.39 Peroxy esters are more easily hydrolyzed 

into the parent carboxylic acid and alkyl hydroperoxides than the other esters. They can 

perform oxygen atom or acyl group transfers and are used as oxidizing agents in 

organic chemistry.107 Peroxy esters also undergo rearrangement reactions.108  

3.1.1 tert-Butyl Peroxy Esters 

 tert-Butyl peroxy esters are commonly employed as polymerization initiators in 

industry and are used as organic synthetic reagents.39,106,107,109 The availability, low 

cost, and high stability of tert-butyl hydroperoxide has allowed economical syntheses of 

various tert-butyl peroxy esters in industry. Since they are relatively carbon-rich 

compounds, their energetic properties have not been studied for use as HEDMs. Still, a 

few low molecular weight tert-butyl peroxy esters such as tert-butyl peroxy acetate have 

been reported as shock sensitive compounds, which are potentially explosive.110 

 In this chapter, synthesis, characterization, and the energetic properties of a 

series of tert-butyl peroxy esters 16–22 (Figure 24) are described. Compounds 16–22 

have O:C ratios in the range of 0.38–0.64, which are only slightly greater than that of 

tert-butyl peroxides 1–15 in Chapter 1. However, the central cores of tert-butyl peroxy 

esters 16–22 contain relatively high oxygen contents (0.75–3.00), when the tert-butyl 

groups on the peripheries are disregarded. Surprisingly, tert-butyl peroxy esters 17–21 

were highly sensitive based on the preliminary flame and Tesla coil tests, even with the 

low oxygen and nitrogen contents. Thus, standard sensitivity tests and energetic 
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calculations were performed. Compounds 16–22 are the first peroxy esters to be 

completely energetically characterized to gain insights about their energetic properties.  
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Figure 24. The series of tert-butyl peroxy esters 16–22. 
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3.2 Results and Discussion 

 Aromatic tert-butyl peroxy esters 16–19, 21, and 22 were synthesized in this 

study since the aromatic tert-butyl peroxides 3, 8, and 12 of Chapter 1 were more 

thermally stable and lower in sensitivity with respect to the non-aromatic tert-butyl 

peroxides. Additionally, π-interactions of aromatic tert-butyl peroxy esters may allow 

high crystalline densities. Increasing the number of tert-butyl peroxy ester groups on the 

aromatic rings increases the oxygen content of the tert-butyl peroxy esters 16–19. 

Compounds 21 and 22 each contain two nitro groups that have been widely used in 

HEDMs due to their ability to increase the energy content without excessively increasing 

the sensitivities. Compound 20 is a non-aromatic low molecular weight tert-butyl peroxy 

ester with a high oxygen content in the central core.  

3.2.1 Synthetic Aspects 

Caution: Organic peroxo-based compounds are potentially explosive and require 

handling with care. Reactions and other manipulations were performed in a fume hood 

behind a blast shield. Personal protective equipment was used whenever necessary: a 

face shield, leather gloves, and a leather apron. Interactions with strong acids, metals, 

metal salts, or easily oxidizable species were avoided to prevent hazardous 

decomposition reactions. All reactions were performed on small scales (≤ 350 mg) and 

at or below room temperature.  

Aromatic peroxy esters (16–19, 21, and 22) were synthesized by treating the 

corresponding benzoyl chlorides with tert-butyl hydroperoxide in the presence of 

pyridine as a base (Scheme 6). Briefly, to a solution of anhydrous pyridine and tBuOOH 

in decane that was kept at –4 °C, a solution of the corresponding benzoyl chloride in 
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anhydrous pentane, CH2Cl2, or Et2O was added dropwise. Then, the reaction was 

stirred for 0.2–2.0 h and was allowed to warm up to 23 °C. Compounds 16, 18, 19, 21, 

and 22 were purified by silica gel column chromatography, but 17 was obtained pure 

without chromatography. The corresponding benzoyl chlorides for the syntheses of 18, 

19, and 21 were synthesized prior to the peroxy ester synthesis due to the moisture 

sensitivity using published procedures.111 Compound 21 was a four step synthesis 

starting from 2,4-dimethyl-1-nitrobenzene. Compound 20 was synthesized similar to the 

aromatic peroxy esters, based on modified published procedures,112 starting from oxalyl 

chloride, and was isolated by a crystallization procedure. 

 

Scheme 6. Synthesis of tert-butyl peroxy esters. 

 tert-Butyl peroxy esters 16–22 were obtained in moderate to high yields and were 

all isolated as white solids. Compounds 19 and 22 are new compounds obtained in this 

study. X-ray quality single crystals of tert-butyl peroxy esters 16–22 were grown by slow 

evaporation (16–18, 21, and 22) or cooling the saturated solutions at –29 °C in the 

freezer (19 and 20). Compounds 16–22 all resulted in colorless crystals. They were in 

forms of planar squares (16), thin long plates (17), thick hexagons (18), thick polygons 

(19 and 22), and thick needles (20 and 21). tert-Butyl peroxy esters 16–22 were 

characterized by 1H and 13C NMR spectroscopy, mass spectrometry, melting point 
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analysis, IR spectroscopy, and elemental analysis. X-ray crystal structures were 

obtained for complete characterization of all of the tert-butyl peroxy esters 16–22.  

3.2.2 Spectroscopy 

 1H NMR spectra of 16–22 consist of deshielded methyl proton peaks in the 

chemical shift range of δ 1.36–1.47. The methyl peak of 18 was obtained as a multiplet, 

which might be due to spatial interactions of the protons or different isomers present in 

solution. In the 13C NMR spectra, the quaternary carbon peaks of tert-butyl groups were 

present in the chemical shift range of 84.62–86.18 ppm. These quaternary carbon 

peaks of tert-butyl groups were more deshielded than the corresponding quaternary 

carbon peaks of tert-butyl peroxides due to the presence of the carbonyl group. The 

carbonyl carbon peaks in the 13C NMR spectra were in the chemical shift range of 

160.64–163.68 ppm for the aromatic tert-butyl peroxy esters 16–19, 21, and 22. 

However, a carbonyl carbon peak was not observed for 20 with 2 s of delay time (d1). 

When the delay time was increased to 5 s, a peak was observed at 154.36 ppm, which 

might be from the carbonyl carbons of 20.  

 The characteristic IR stretching frequencies of the tert-butyl peroxy esters are 

medium CH3 antisymmetric and symmetric stretching modes in the range of 2850–3000 

cm–1, strong C=O stretching modes in the range of 1700–1820 cm–1, medium or strong 

C–O stretching modes in the range of 1000–1300 cm–1, and weak O–O stretching 

modes in the range of 800–900 cm–1.96,97 In the IR spectra of 16–22, there were 

medium to weak CH3 antisymmetric and symmetric stretching modes in the range of 

2870–2984 cm–1. Strong C=O stretching modes were present in the range of 1753–

1805 cm–1 and the highest C=O stretching mode (1805 cm–1) was observed in 20. The 
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C=O stretching frequencies increase from 16–19 indicating that C=O bonds become 

stronger with more tert-butyl peroxy ester groups on the phenyl ring. Two different C=O 

stretching frequencies were observed for 18 (1759 and 1771 cm–1) and 22 (1761 and 

1749 cm–1). There were multiple strong peaks within the frequency range of 1000–1300 

cm–1 and medium to weak peaks in the frequency range of 800–900 cm–1 for the 

stretching modes of C–O and O–O, respectively. 

3.2.3 X-Ray Crystal Structures 

X-ray crystal structures were obtained for all of the tert-butyl peroxy esters 16–

22. Compound 19 was crystallized as an adduct of hexane (19·hexane). In the X-ray 

crystal structure of 19·hexane, the hexane molecule was disordered. However, the 

disorder of hexane did not influence the chemistry of 19. The X-ray crystal structures 

were normal without unusual intermolecular interactions. Experimental crystallographic 

data are summarized in Table 12. Perspective views of the crystal structures are given 

in the Figures 25–31. Selected bond lengths from the structures are provided in Tables 

13 and 14. Short contact lists generated by Mercury 3.5.1 software are provided in 

Tables 15, 16, and 17. 

The O–O bond lengths of the tert-butyl peroxy esters 16–22 (Table 12) were in 

the range of the O–O bond lengths reported for peroxy esters.99 Low crystalline 

densities were obtained for the tert-butyl peroxy esters 16–22 due to the bulky tert-butyl 

peroxy groups. Their crystalline densities were in the range of 1.161–1.487 g/cm3. 



www.manaraa.com

 
 

 

Table 12. Experimental crystallographic data of 16–18, 19·hexane, and 20–22. 

 16 17 18 19·hexane 20 21 22 

Formula C16H22O6 C21H30O9 C26H38O12 C42H68O18 C40H72O24 C16H20N2O10 C11H12N2O7 

FW 310.33 426.45 542.56 860.96 936.97 400.34 284.23 

Space group P 1 21/c 1 P 1bar C 1 2/c 1 C 1 c 1 P 1bar P 1 21/c 1 P 1bar 

a (Å) 17.5862(13) 5.9235(4) 27.942(2) 22.1254(16) 10.4787(4) 15.0401(9) 5.8362(4) 

b (Å) 9.3966(7) 12.4414(7) 7.9924(5) 19.4588(16) 14.5660(6) 5.7008(3) 10.2950(7) 

c (Å) 9.9604(7) 16.3240(10) 29.958(2) 11.4416(9) 16.5368(7) 21.6710(13) 10.8250(7) 

V (Å3) 1642.2(2) 1158.37(13) 5938.8(7) 4926.0(7) 2524.06(18) 1857.58(19) 634.81(7) 

Z 4 2 8 4 2 4 2 

T (K) 100(2) 100(2) 100(2) 100(2) 100(2) 100(2) 100(2) 

λ (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 

ρcalc (g/cm3) 1.255 1.223 1.214 1.161 1.233 1.431 1.487 

μ (mm–1) 0.096 0.095 0.096 0.090 0.102 0.121 0.126 

R(F)a (%) 6.12 4.00 4.46 4.67 3.54 3.62 3.83 

Rw(F)b (%) 18.23 11.58 14.62 13.24 7.91 12.72 11.45 

aR(F) = ∑║Fo│–│Fc║ ⁄ ∑│Fo│; bRw(F) = [∑w(Fo2 - Fc2)2/∑w(Fo2)2]1/2 
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Figure 25. Perspective view of 16 with thermal ellipsoids at the 50% probability level.  
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Figure 26. Perspective view of 17 with thermal ellipsoids at the 50% probability level. 
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Figure 27. Perspective view of 18 with thermal ellipsoids at the 50% probability level.  
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Figure 28. Perspective view of 19·hexane with thermal ellipsoids at the 50% probability 
level. 
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Figure 29. Perspective view of 20 with thermal ellipsoids at the 50% probability level. 
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Figure 30. Perspective view of 21 with thermal ellipsoids at the 50% probability level.  
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Figure 31. Perspective view of 21 with thermal ellipsoids at the 50% probability level. 
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Table 13. The O–O, C=O, and N–O bond lengths (Å) of 16–18, 19·hexane, and 20–22. 

Bond 16 17 18 19·hexane 20 21 22 

O–O 1.466(3) 1.4655(8) 1.4667(9) 1.467(3) 1.4737(17) 1.4693(7) 1.4594(7) 

  1.4599(8) 1.4649(9) 1.462(3) 1.4723(18) 1.4642(7)  

  1.4636(8)  1.468(3)    

    1.477(3)    

    1.476(3)    

    1.468(3)    

C=O 1.199(4) 1.1983(10) 1.1948(11) 1.185(4) 1.194(2) 1.1932(10) 1.1971(9) 

  1.1938(10) 1.2000(11) 1.185(4) 1.186(2) 1.1908(9)  

  1.1986(10)  1.187(4)    

    1.192(4)    

    1.206(4)    

    1.189(4)    

N–O      1.2268(10) 1.2228(8) 

      1.2249(9) 1.2273(8) 

      1.2246(10) 1.2268(8) 

      1.2219(10) 1.2206(9) 
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Table 14. The C(O)–O, C–O, and C–N bond lengths (Å) of 16–18, 19·hexane, and 20–22. 

Bond 16 17 18 19·hexane 20 21 22 

C(O)–O 1.355(4) 1.3556(10) 1.3564(12) 1.356(4) 1.338(2) 1.3408(9) 1.3592(8) 

  1.3548(9) 1.3552(10) 1.353(4) 1.347(2) 1.3559(8)  

  1.3579(10)  1.337(4)    

    1.348(4)    

    1.331(4)    

    1.359(4)    

C–O 1.458(4) 1.4580(10) 1.4624(11) 1.465(4) 1.473(2) 1.4538(9) 1.4610(9) 

  1.4630(10) 1.4608(11) 1.470(4) 1.476(2) 1.4615(9)  

  1.4634(10)  1.456(4)    

    1.447(4)    

    1.446(4)    

    1.472(4)    

C–N      1.4688(9) 1.4732(9) 

      1.4698(9) 1.4722(9) 
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Table 15. The list of short contacts of 16, 17, 18, and 19·hexane. 

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

16 1 O3 H9 2.626 –0.094 
 2 O1 H20 2.693 –0.027 
 3 H1 H12 2.334 –0.066 
 4 O4 H21 2.685 –0.035 
 5 C14 C15 3.365 –0.035 

17 1 O8 C6 3.092 –0.128 
 2 O9 C4 3.124 –0.096 
 3 C3 H5 2.768 –0.132 
 4 C16 C5 3.197 –0.203 
 5 H28 O6 2.611 –0.109 
 6 O5 H9 2.604 –0.116 

18 1 O3 H38 2.679 –0.041 
 2 O5 C21 2.953 –0.267 
 3 C6 O12 3.053 –0.167 
 4 C10 O12 2.98 –0.24 
 5 C5 O10 3.199 –0.021 
 6 C5 O12 3.107 –0.113 
 7 H4 O10 2.461 –0.259 
 8 H9 O10 2.591 –0.129 
 9 O5 H29 2.537 –0.183 
 10 O5 H31 2.584 –0.136 
 11 H6 O7 2.662 –0.058 
 12 O4 O6 2.982 –0.058 
 13 O8 O10 2.911 –0.129 

19·hexane 1 H1 O10 2.634 –0.086 
 2 H32C O10 2.674 –0.046 
 3 H27A O1 2.642 –0.078 
 4 H34 O1 2.376 –0.344 
 5 O16 H43 2.678 –0.042 
 6 H13 H51 2.304 –0.096 
 7 H64 H21 2.399 –0.001 
 8 H66 H45 2.371 –0.029 
 9 H6 O13 2.494 –0.226 
 10 H62 O13 2.514 –0.206 
 11 O4 H53 2.522 –0.198 
 12 O11 O13 3.001 –0.039 
 13 O5 O7 3.008 –0.032 
 14 O4 O2 2.999 –0.041 
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Table 16. The list of short contacts of 20. 

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 
20 1 O3 C4 3.137 –0.083 
 2 O4 C3 3.124 –0.096 
 3 O4 C4 3.184 –0.036 
 4 O5 H8 2.693 –0.027 
 5 O1 C22 3.106 –0.114 
 6 O1 C23 3.098 –0.122 
 7 O2 C23 3.185 –0.035 
 8 H1 O18 2.559 –0.161 
 9 C3 O16 3.065 –0.155 
 10 C3 O17 3.122 –0.098 
 11 C4 O17 3.186 –0.034 
 12 H3 O25 2.543 –0.177 
 13 H10 O24 2.672 –0.048 
 14 O6 H62 2.572 –0.148 
 15 O9 C14 3.142 –0.078 
 16 O10 C13 3.129 –0.091 
 17 O10 C14 3.19 –0.03 
 18 O13 H31 2.699 –0.021 
 19 H33 O18 2.669 –0.051 
 20 O11 H51 2.578 –0.142 
 21 H24 O19 2.547 –0.173 
 22 O7 C32 3.113 –0.107 
 23 O7 C33 3.099 –0.121 
 24 O8 C33 3.187 –0.033 
 25 H41C O24 2.563 –0.157 
 26 C13 O22 3.064 –0.156 
 27 C13 O23 3.123 –0.097 
 28 C14 O23 3.184 –0.036 
 29 O14 C22 3.093 –0.127 
 30 O14 C23 3.148 –0.072 
 31 O15 C22 3.118 –0.102 
 32 O19 H36 2.678 –0.042 
 33 O20 C32 3.088 –0.132 
 34 O20 C33 3.149 –0.071 
 35 O21 C32 3.113 –0.107 
 36 H57 O25 2.681 –0.039 
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Table 17. The list of short contacts of 21 and 22. 

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

21 1 O7 H1 2.655 –0.065 

 2 C11 O5 3.044 –0.176 

 3 C12 O5 3.155 –0.065 

 4 O9 H14 2.506 –0.214 

 5 O6 N1 2.923 –0.147 

 6 O6 C11 3.072 –0.148 

 7 O7 C12 3.215 –0.005 

 8 C14 O8 3.148 –0.072 

 9 O1 C5 3.207 –0.013 

 10 O10 C3 3.175 –0.045 

 11 O10 H4 2.566 –0.154 

 12 C3 C3 3.392 –0.008 

 13 O5 H13 2.574 –0.146 

 14 O3 O8 2.843 –0.197 

 15 O7 O10 2.985 –0.055 

22 1 C9 O3 3.152 –0.068 

 2 C9 N1 3.175 –0.075 

 3 C10 O3 3.201 –0.019 

 4 O5 H10 2.555 –0.165 

 5 O7 H7 2.43 –0.29 

 6 O6 C6 3.207 –0.013 

 7 O6 C11 3.179 –0.041 

 8 O1 N2 2.977 –0.093 

 9 O1 C10 3.129 –0.091 

 10 C3 C9 3.219 –0.181 

 11 O4 H8 2.519 –0.201 

 12 H5 H5 2.386 –0.014 

 13 O3 O3 2.927 –0.113 

 14 O3 H11 2.492 –0.228 
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 The X-ray crystal structures of 16–22 lack strong hydrogen bonding interactions. 

All of the aromatic compounds 16–19, 21, and 22 contain various π-interactions, C–

H···O hydrogen bonds (O···H: 2.430–2.693 Å), and O···O, N···O, C···H, and H···H short 

contacts that increase the molecular stability (Tables 15–17). The non-aromatic 

compound 20 contains only C–H···O hydrogen bonds (O···H: 2.543–2.693 Å) and C···O 

contacts (3.065–3.186 Å). π-Interactions of the aromatic tert-butyl peroxy esters include 

C–H···π (16 and 19), Cπ···O (17, 18, 21, and 22), Cπ···C (16, 17, and 22), and Cπ···N 

(22) interactions. Compound 16 contains C–H···π interactions that involve the methyl 

C–H bonds. There are C–H···π interactions in the crystalline lattice of 19 that involve the 

C–H bonds of hexane molecules trapped between molecules of 19. The Cπ···O, Cπ···C, 

and  Cπ···N distances are in the range of 3.044–3.219 Å. They are caused by tert-butyl 

peroxy ester group-aromatic ring interactions of 17 (Figure 31), 18, and 21, and both 

tert-butyl peroxy ester group-aromatic ring and nitro group-aromatic ring interactions of 

22 (Figure 32). There are two intramolecular O···O contacts (2.843 and 2.985 Å) in the 

crystal structure of 21 and one intermolecular O···O contact (2.927 Å) in the crystal 

structure of 22 (Figure 33). N···O short contacts are present in both 21 (2.977 Å) and 22 

(2.923 Å). There are C···H short contacts (2.768 Å) in the crystal structure of 17. 

Compounds 16, 19, and 22 contain H···H short contacts (2.304–2.399 Å).  

 The intermolecular interactions that involve the O–O bonds and the oxygen 

atoms of carbonyl groups assist in holding the atoms of the peroxy ester groups 

together. Also, the additional energy from impact or friction stimuli could be dissipated 

through the network of short contacts without breaking covalent bonds. Thus, these 

numerous stabilization interactions could lead to lower sensitivity materials. The number 
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of bulky tert-butyl peroxy ester groups increases from 16–19, and thus, the O–O bonds 

become more hindered from the surrounding molecules. Compound 16 contains C–

H···O hydrogen bonds that involve one oxygen atom of each of the two O–O bonds. In 

the crystal structure of 17, one of the tert-butyl peroxy ester groups interacts with the 

aromatic ring of a neighboring molecule via Cπ···O interactions and molecular stacks 

are formed. The O–O bonds of the two other tert-butyl peroxy ester groups of 17 are not 

involved in intermolecular interactions although oxygen atoms of their carbonyl groups 

form O···H–C interactions. All four O–O bonds of 18 are involved in forming 

intermolecular interactions. Two tert-butyl peroxy ester groups of 18 have multiple 

Cπ···O interactions with two neighboring aromatic rings, forming stacks. The other two 

tert-butyl peroxy ester groups of 18 contain C–H···O hydrogen bonding interactions that 

involve one oxygen atom of each of the O–O bonds. Compound 19 contains six tert-

butyl peroxy ester groups and none of the O–O bonds are involved in intermolecular 

interactions due to the crowding of the tert-butyl groups, which can lead to high 

sensitivities. However, all of the oxygen atoms of the carbonyl groups form O···H–C 

interactions. In the X-ray crystal structures of 21 and 22, there are additional stabilizing 

interactions in the crystalline lattice from the nitro groups. There are Cπ···O and N···O 

intermolecular interactions and an intramolecular O···O contact (21) that are involved in 

reducing the high activity of O–O bonds in the crystalline lattice. The oxygen atoms of 

the carbonyl groups of 21 and 22 form Cπ···O, C···O, and C–H···O interactions and one 

intramolecular O···O contact (21).  

 The non-aromatic tert-butyl peroxy ester 20 contain multiple C···O contacts that 

involve only one of the two O–O bonds. There are multiple C–H···O interactions that 
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involve the oxygen atoms of the carbonyl groups. Still, there are large voids (4.912 and 

7.651 Å) among the molecules of 20 in the crystalline lattice (Figure 34) that can 

increase the sensitivities of 20.  

 

 

Figure 32.  tert-Butyl peroxy ester group-aromatic ring interactions (blue) of 17. 

 

 

Figure 33.  tert-Butyl peroxy ester group-aromatic ring and nitro group-aromatic ring 
interactions (blue) of 22. 

Mercury 3.5.1 

Mercury 3.5.1 
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Figure 34.  Intra- and intermolecular O···O contacts (blue) of 21 (left) and 22 (right). 

 

 

Figure 35.  Large voids (4.912 and 7.651 Å) among the molecules of 20. 

Mercury 3.5.1 

Mercury 3.5.1 
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3.2.4 Thermal Stability  

 Thermal stabilities of tert-butyl peroxy esters 16–22 were assessed using 

thermogravimetry (TGA/DTA). The decomposition temperatures (TDec) were obtained 

from the thermograms of 16–22. CBS-4M electronic enthalpies were calculated using 

the Gaussian09 software to obtain heats of formation values (ΔfH°) by our collaborators 

from the Klapötke lab.113 The TDec and ΔfH° values are provided in Table 18.  

Table 18. Decomposition temperatures and heats of formation values of 16–22. 

Compound TDec (°C) ΔfH° (kJ/mol) 

16 122 –820.7 

17 123 –1211.3 

18 123 –1584.7 

19 86 < –1584.7a 

20 53 –811.4 

21 95 –790.0 

22 121 –436.9 

aEstimated value based on the trend of 16–18. 

 Except for 20, the rest of the aromatic tert-butyl peroxy esters 16–19, 21, and 22 

are fairly thermally stable compounds with TDec values ranging from 86–123 °C (Table 

18). Compound 20 has a very low TDec making it unsuitable for HEDM applications. The 

ΔfH° values are all exothermic ranging from –1584.7 to –436.9 kJ/mol and relatively 

more positive heats of formation values were obtained for nitro-substituted aromatic 

compounds 21 and 22. More positive ΔfH° values are desirable for HEDMs since they 

render more energetic molecules. The ΔfH° values decrease with the increasing number 

of tert-butyl peroxy ester groups on the phenyl rings from 16–18, which indicates that 
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increasing the number of tert-butyl peroxy ester groups result in less energetic 

molecules. Unfortunately, the ΔfH° calculation of 19 was not possible due to software 

issues with this compound. However, based on the decreasing trend of heats of 

formation values from 16–19, the heat of formation value for compound 19 should be 

below –1584.7 kJ/mol. 

3.2.5 Preliminary Qualitative Sensitivity Tests 

 Sensitivities of tert-butyl peroxy esters 16–22 were studied using the flame, 

hammer, sand paper, and electrostatic discharge (Tesla coil) tests. Surprisingly, 17–21 

were sensitive and energetic compounds based on the flame and Tesla coil tests (Table 

19) regardless of the low oxygen and nitrogen contents. No responses were observed 

for 16–22 in the hammer impact and sand paper friction tests. 

Table 19. Flame and Tesla coil test results for 16–22. 

Compound Flame Test Response Tesla coil test response 

16 Bright flame  No response  

17 Sudden, bright flame with smoke and soot  Flame popped out  

18 Sudden, bright flame with smoke and soot  No response  

19 Sudden, large, bright flame with smoke  Flame popped out  

20 Sudden, large, bright flame  Flame popped out  

21 Sudden, large, bright flame with soot  Flame popped out  

22 Bright flame  No response  

 

 Based on the preliminary sensitivity tests, an O:C ratio of 0.43 (17) was sufficient 

to provide observable sensitivity responses. The high sensitivities of 17–21 may be a 

result of high oxygen contents in the cores of these molecules. Since the carbon content 
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is high, smoke and/or soot were observed in the flame tests of 17–19 and 21, indicating 

that they were not completely oxidized. Compound 20 was the most sensitive tert-butyl 

peroxy ester in the study and provided the most sensitive test responses. The 

sensitivities of 19 were the highest from aromatic tert-butyl peroxy esters 16–19, which 

can be attributed to the O–O trigger bonds that are not involved in any intermolecular 

interactions in the crystal structure. Compound 22 was not high in sensitivity based on 

the preliminary sensitivity tests. The low sensitivity of 22 can be attributed to the 

additional stabilizing intermolecular interactions in the crystalline lattice due to the 

presence of nitro groups with only one tert-butyl peroxy ester group. 

3.2.6 Standard Sensitivity Tests 

 Impact, friction, and electrostatic discharge sensitivities of 16–22 were 

determined with a BAM drop hammer, BAM friction tester, and an electrostatic spark 

sensitivity tester using standard experimental methods by our collaborators in the 

Klapötke lab.29–34 Table 20 includes the impact, friction, and electrostatic discharge 

sensitivities of 16–22. Based on the “UN Recommendations on the Transport of 

Dangerous Goods”,28 16 is “less sensitive”, 17, 18, and 22 are “sensitive”, and 19–21 

are “very sensitive” towards impact. Compounds 16 and 22 are “less sensitive”, 17 and 

21 are “sensitive”, 18 is “very sensitive”, 19 should be “very sensitive”, and 20 is 

“extremely sensitive” towards friction. The peroxy esters 16–22 are much lower in 

sensitivity than TATP, DADP, HMTD, and MEKP (Tables 3–6).  

 The aromatic peroxy esters 17–19, 21, and 22 show low sensitivities to both 

impact and friction. These sensitivities are among the lowest reported impact and friction 

sensitivities for peroxo-based compounds. The impact and friction sensitivities increase 
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with the number of tert-butyl peroxy ester groups from 16–18. Thus, although the 

sensitivity measurements were not obtained due to the difficulty in scaling up, the 

impact and friction sensitivities of 19 can be predicted to be greater than 18. The high 

sensitivities of 19 were also observed in preliminary sensitivity tests. The non-aromatic 

peroxy ester 20 shows the highest sensitivities towards impact, friction, and electrostatic 

discharge. Large voids in the crystal structure of 20 might be the cause of these high 

sensitivities. The aromatic tert-butyl peroxy esters 16–19, 21, and 22 show electrostatic 

discharge sensitivity values that are higher than the electrical discharges that can be 

created by the human body (≤ 0.02 J)2 and they can be safely handled. Unfortunately, 

the electrostatic discharge sensitivity of 20 is too high for practical use.   

Table 20. Impact, friction, and electrostatic discharge sensitivities of 16–22. 

Compound IS (J) FS (N) ESDS (J) 

16 40 360 0.7 

17 20 240 0.5 

18 2 60 0.7 

19 < 2a < 60a 0.1 

20 1 < 5 0.015 

21 5 96 0.4 

22 10  360 0.5 

aEstimated values based on the trends of compounds 16–18. 

3.2.7 Energetic Performance Calculations 

  The energetic properties of 16–22 were calculated using the EXPLO5 V6.02 

software (Table 21) by our collaborators in the Klapötke lab.114 These calculated VDet 

and PDet values of 16–22 are in the range of 4896–6003 m/s and 60–118 kbar, 
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respectively. They are moderate to high detonation performances, which are useful for 

HEDMs. 

 The moderate VDet values of 16–18 can be attributed to the high negative oxygen 

balance values in the range of –190.75 to –173.98 and the low crystalline densities 

1.214–1.255 g/cm3. These calculated VDet values decrease with the increasing number 

of tert-butyl peroxy ester groups on the phenyl rings from 16–18. The reduction of 

crystalline density from 16–18 has caused the detonation velocities to decrease, 

although the O:C ratio increases from 0.43–0.50 for 16–18. Thus, we can predict the 

detonation velocity of 19 with a lower crystalline density to be < 4896 m/s.  

 The calculated detonation velocities of 20–22 are in the range of 5361–6003 m/s, 

which are greater than the detonation velocities of the known peroxide explosives 

TATP, DADP, HMTD, and MEKP (4,511–5,300 m/s). The non-aromatic compound 20 

has larger values for total energy of detonation (ΔExU) and V0 than 16–18, and thus, a 

higher detonation velocity was observed than 16–18 with similar crystalline densities. 

The highest detonation velocities were obtained with the nitro-substituted aromatic 

peroxy esters 21 and 22 with the highest crystalline densities (1.431 and 1.487 g/cm3). 

These impressively high detonation velocities (5764 and 6003 m/s) are surprising with 

the low oxygen and nitrogen contents of the tert-butyl peroxy esters 21 and 22. 
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Table 21. Calculated energetic properties of 16–22. 

Property 16 17 18 19 20 21 22 

Formula C16H22O6 C21H30O9 C26H38O12 C36H54O18 C10H18O6 C11H12N2O7 C11H12N2O7 

FW (g/mol) 310.28 390.48 542.57 774.33 234.28 400.34 284.06 

Ωa (%) –190.75 –180.08 –173.98 –167.37 –157.10 –127.89 –118.21 

ρb (g/cm3) 1.255  1.223  1.214  1.161  1.233 1.431 1.487 

ρc (g/cm3) 1.231 1.200 1.192 1.140d 1.210 1.205 1.460 

 

EXPLO5 V6.02  

ΔExU° (kJ/kg) –2589 –2726 –2836 < –2836e –3124 –3950 –4099 

PDet (kbar) 63 60 61 < 60e 75 104 118 

VDet (m/s) 5083 4906 4896 < 4896e 5361 5764 6003 

Vo (L/kg) 707 731 745 > 745e 836 699 670 

aOxygen balance for oxidation of carbon to CO2  
bCrystalline density at 100 K 
cCrystalline densities at 298 K (for energetic calculations) 
 ( )[ ]TTK −+= 2981298 ναρρ  (T = 100 K, ρT = Desnsity at 100 K, αν = 1.5 x 10–4 K–1) 
dSolvent free estimated crystalline density at 298 K (for energetic calculations) 
eEstimated values based on the trends of 16–18 
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3.3 Conclusions 

 tert-Butyl peroxy esters 16–22 were synthesized in moderate to high yields 

and were completely characterized. Sensitivities and energetic performances of 

16–22 were studied for their use as HEDMs. tert-Butyl peroxy esters 16–22 are 

all surprisingly energetic even though the oxygen and nitrogen contents are low. 

This might be a result of the instability with the high O:C ratios in the central 

cores of these molecules (0.75–3.00). tert-Butyl peroxy esters 16–22 have 

moderate to high detonation velocities, which are useful for HEDM applications. 

 The aromatic tert-butyl peroxy esters 16–18, 21, and 22 are much lower in 

impact and friction sensitivities with respect to the extremely sensitive known 

peroxo-based explosives TATP, DADP, MEKP, and HMTD. These aromatic 

peroxy esters 18, 21, and 22 show the lowest reported impact and friction 

sensitivities for peroxo-based compounds to date. Thus, they can be safely 

handled in industry. Compounds 16–19 could potentially be good initiators of 

radical polymerization due to the ability to provide higher concentrations of 

radicals than tert-butyl benzoperoxoate, which is currently employed as a radical 

initiator. Compound 19 is the first reported aryl hexaperoxy ester of mellitic acid. 

It could potentially be an excellent initiator of radical polymerization with the 

ability to provide the highest concentration of radicals. Compound 20 has the 

highest core O:C ratio (3.00), but based on the thermal stability and sensitivity 

measurements, it is evident that 20 is a thermally unstable and highly sensitive 

compound that is not useful for HEDM applications.  
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 The calculated detonation velocities of compounds 20–22 (5361–6003 m/s) 

surpass the detonation velocities of the known peroxide explosives TATP, DADP, 

MEKP, and HMTD (4,511–5,300 m/s). The highest detonation velocities were 

obtained for the nitro-substituted aromatic tert-butyl peroxy esters 21 and 22 due 

to their high crystalline densities. With their very low impact and friction 

sensitivities, they could be useful as secondary explosives. Compounds 21 and 

22 are among the first highly energetic and low sensitivity peroxo-based 

compounds that can be categorized as secondary HEDMs. 

3.4 Experimental Section 

 General Considerations: All manipulations during the reactions and 

filtrations through Celite on coarse glass frits were carried out under an argon 

atmosphere using either Schlenk line or glove box techniques. Diethyl ether was 

distilled in the presence of sodium benzophenone ketyl. Hexane was distilled in 

the presence of P2O5. Dichloromethane was distilled in the presence of calcium 

hydride. Chemicals were purchased from Sigma-Aldrich, Acros Organics, or Alfa 

Aesar and were used without further purification. ACS grade solvents were 

obtained from EMD and Fisher Scientific. Petroleum ether used in the synthetic 

protocols had a boiling point range of 35–60 °C. 

 Synthesis of benzene-1,2,4,5-tetracarbonyl tetrachloride (for the synthesis 

of 18) was carried out using a published procedure.111a Synthesis of benzene-

1,2,3,4,5,6-hexacarbonyl hexachloride was carried out using a slightly modified 

published procedure.111b Instead of the 24 h reaction time in the published 

procedure, a reaction time of 7 h was sufficient for the completion of the reaction 
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(for complete dissolution of 4.9 g of mellitic acid in thionyl chloride). Compound 

20 was synthesized by a procedure based on published procedures.112 

Syntheses of 1,5-dimethyl-2,4-dinitrobenzene, 4,6-dinitroisophthalic acid, and 

4,6-dinitroisophthaloyl dichloride (for the synthesis of 21) were carried out using 

the published procedures.111c  

 Silica gel 60, 230–400 mesh (EMD Chemicals) was used to perform silica 

gel column chromatography.104 ASTM TLC plates precoated with silica gel 60 F254 

(250 μm thickness) were used for thin-layer chromatography (TLC). TLC spots 

were observed using a UV lamp and/or a potassium permanganate solution as a 

stain (3 g KMnO4, 20 g K2CO3, 5 mL 5% w/v aqueous NaOH, 300 mL H2O). The 

spots on the stained TLC plates were visualized after heating with a heat gun. 

 1H and 13C{1H} NMR spectra were obtained at 400 MHz and 101 MHz, 

respectively, in CDCl3 and CD3OD as indicated and were referenced to the 

residual proton and carbon resonances of the solvent (CDCl3: 1H δ 7.27, 13C 

77.23; CD3OD: 1H δ 3.31, 13C 49.00). Mass spectra were obtained on an 

electrospray time-of-flight high-resolution Waters Micromass LCT Premier XE 

mass spectrometer. Infrared spectra were obtained from a Shimadzu MIRacle 10 

IRAffinity-1 equipped with a single reflection ATR accessory. Melting points were 

determined on an Electrothermal IA 9300 melting point apparatus and are 

uncorrected. Thermogravimetric (TGA/DTA) measurements to determine the 

decomposition temperatures of compounds 16−22 were performed at a heating 

rate of 5 °C min−1 with an OZM Research DTA 552-Ex instrument. 
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 Qualitative Sensitivity Tests: Qualitative sensitivity tests include burning 

about 3-5 mg of the compound in the Bunsen burner flame, striking 3-5 mg of the 

compound on a metal plate with a hammer, and passing an electrostatic 

discharge through 3-5 mg of the compound on a metal plate using an Electro 

Technic BD 10 Tesla coil (120 V, 0.35 A). 

 Quantitative Sensitivity Tests: Quantitative sensitivity Tests include BAM 

drop hammer31 impact tests carried out according to STANAG 448929 modified 

instructions30 using approximately 0.4 mL of the compound, Friction tests with a 

BAM friction tester carried out according to STANAG 448732 modified 

instructions33 using approximately 5 mg of the compound, and electrostatic spark 

tests with an ESD 2010 EN, OZM Electric Spark Tester according to STANAG 

451534 instructions using 0.1 mL of the compound performed by the Klapötke 

group. 

 Preparation of Di-tert-butyl benzene-1,4-bis(carboperoxoate) (16). To a 

solution of anhydrous pyridine (0.13 mL, 3.0 mmol) and 5.5 M tBuOOH in decane (0.60 

mL, 3.0 mmol) in a 100 mL Schlenk flask, which was kept at –4 °C (ice-water-salt bath), 

a solution of terephthaloyl chloride (0.305 g, 1.50 mmol) in anhydrous pentane (25 mL) 

was added dropwise with a cannula over a period of 15 min. Then, the reaction was 

stirred for about 15 min at –4 °C. Afterwards, the reaction was allowed to warm up to 

room temperature (23 °C) and was filtered through a 1.5 cm pad of Celite on a coarse 

glass frit. Then, the solvent was removed under reduced pressure to obtain 0.350 g 

(75%) of crude 16 as a white solid. Recrystallization in 1:1 hexanes:dichloromethane by 

slow evaporation resulted in 0.280 g (60%) of colorless, square-shaped crystals of 16: 
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mp 116–118 °C; IR (ν cm–1): 2982 (m), 2935 (w), 2902 (w), 2873 (w), 1753 (s), 1692 

(m), 1527 (w), 1501 (w), 1455 (w), 1404 (m), 1387 (w), 1366 (m), 1295 (w), 1263 (m), 

1233 (s), 1186 (s), 1117 (w), 1069 (s), 1011(s), 901 (w), 872 (m), 851 (m), 820 (m), 799 

(m), 744 (w), 721 (s); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  8.04 (s, 4H, CH), 1.42 (s, 

18H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 163.56 (C), 132.13 (C), 129.56 

(CH), 84.62 (C),  26.43 (CH3); Anal. Calcd for C16H22O6: C, 61.92; H, 7.15. Found: C, 

61.75; H, 7.09. X-ray quality colorless, square-shaped single crystals were grown by 

slow evaporation in diethyl ether. 

 Preparation of Tri-tert-butyl benzene-1,3,5-tris(carboxyloperoxoate) (17). To 

a solution of anhydrous pyridine (0.13 mL, 3.0 mmol) and 5.5 M tBuOOH in decane (1.0 

mL, 5.0 mmol) in a 100 mL Schlenk flask, which was kept at –4 °C (ice-water-salt bath), 

a solution of benzene-1,3,5-tricarbonyl trichloride (0.270 g, 1.00 mmol) in anhydrous 

pentane (10 mL) was added slowly with a cannula over a period of 5 min. Then, the 

reaction was stirred for about 1 h while allowing it to warm up to 10 °C. Afterwards, the 

reaction was allowed to warm up to room temperature (23 °C) and it was filtered 

through a 1.5 cm pad of Celite on a coarse glass frit. Then, the solvent was removed 

under reduced pressure to obtain 0.328 g (77%) of 17 as a white solid. Recrystallization 

in 1:1 petroleum ether:diethyl ether by slow evaporation resulted in 0.272 g (64%) of 17 

as colorless, thin, long, plate-like single crystals: mp 112–114 °C; IR (ν cm–1): 2980 (m), 

2936 (w), 2872 (w), 1753 (s), 1701 (m), 1631 (w), 1526 (m), 1495 (w), 1458 (w), 1391 

(m), 1366 (m), 1315 (m), 1260 (m), 1173 (s), 1103 (s), 1022 (w), 922 (m), 881 (m), 845 

(s), 802 (m), 764 (m), 719 (s); 1H NMR (400 MHz, CD3OD, 23 °C, δ):  8.65 (s, 3H, CH), 

1.43 (s, 27H, CH3); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm): 163.68 (C), 134.52 
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(CH), 130.72 (C), 85.92 (C),  26.37 (CH3); Anal. Calcd for C21H30O9: C, 59.15; H, 7.09. 

Found: C, 58.90; H, 7.16. 

 Preparation of Tetra-tert-butyl benzene-1,2,4,5-tetrakis(carboxyloperoxoate) 

(18). To a solution of anhydrous pyridine (0.20 mL, 4.7 mmol) and 5.5 M tBuOOH in 

decane (1.6 mL, 7.9 mmol) in a 100 mL Schlenk flask, which was kept at –4 °C (ice-

water-salt bath), a solution of benzene-1,2,4,5-tetracarbonyl tetrachloride (0.387 g, 1.18 

mmol) in distilled dichloromethane (10 mL) was added slowly with a cannula over a 

period of 5 min. Then, the reaction was stirred for about 1 h while allowing it to warm up 

to 10 °C. Afterwards, the reaction was allowed to warm up to room temperature (23 °C) 

and it was filtered through a 1.5 cm pad of Celite on a coarse glass frit. Then, the filtrate 

was concentrated and the product was purified by silica gel column chromatography 

with 10:1 dichloromethane:ethyl acetate to obtain 0.269 g (42%) of 18 as a white solid. 

Recrystallization in 10:1 diethyl ether:tetrahydrofuran by slow evaporation resulted in 

0.163 g (25%) of colorless, thick, hexagonal single crystals of 18: mp 113–115 °C; IR (ν 

cm–1): 2984 (m), 2934 (w), 2870 (w), 1771 (s), 1759 (s), 1651 (w), 1541 (w), 1366 (m), 

1294 (m), 1240 (m), 1209 (m), 1184 (s), 1096 (s), 1061 (s), 1028 (m), 926 (m), 890 (w), 

835 (m), 814 (m), 773 (w), 748 (m), 719 (m); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  

8.04–8.01 (m, 2H, CH), 1.42–1.32  (m, 36H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 

°C, ppm): 162.82 (C), 132.52 (C), 130.51 (CH), 85.29 (C),  26.34 (CH3); ESI-HRMS: 

calcd for [C26H38O12Na]+ 565.2261; found 565.2250. Anal. Calcd for C26H38O12: C, 

57.56; H, 7.06. Found: C, 57.19; H, 7.07. 

 Preparation of Hexa-tert-butyl benzene-1,2,3,4,5,6-

hexakis(carboxyloperoxoate) (19).  To a solution of anhydrous pyridine (0.075 mL, 
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1.75 mmol) and 5.5 M tBuOOH in decane (0.6 mL, 3.0 mmol) in a 100 mL Schlenk 

flask, which was kept at –4 °C (ice-water-salt bath), a solution of benzene-1,2,3,4,5,6-

hexacarbonyl hexachloride (0.113 g, 0.25 mmol) in distilled dichloromethane (10 mL) 

was slowly added with a cannula. Then, the reaction was stirred for about 2 h while 

allowing it to warm up to room temperature (23 °C). The reaction was concentrated and 

the product was purified by silica gel column chromatography with CH2Cl2 to obtain 

0.070 g (36%) of 19 as a white solid. Recrystallization in 1:1 dichloromethane:hexanes 

at –29 °C resulted in 0.057 g (29%) of colorless, thick, polygonal single crystals of 19: 

mp 85 °C dec. before melting; IR (ν cm–1): 2982 (m), 2932 (w), 2870 (w), 1775 (s), 1462 

(w), 1412 (w), 1393 (w), 1368 (m), 1327 (w), 1298 (w), 1263 (w), 1248 (w), 1140 (s), 

1109 (m), 1076 (m), 1032(m), 970 (m), 922 (w), 868 (w), 835 (m), 804 (w), 739 (w), 727 

(w); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  1.37 (s, 54H, CH3); 13C{1H} NMR (101 MHz, 

CDCl3, 23 °C, ppm): 161.12 (C), 133.10 (C), 85.69 (C), 26.46 (CH3); ESI-HRMS: calcd 

for [C36H54O18Na]+ 797.3208; found 797.3225. 

 Preparation of Di-tert-butyl ethanebis(peroxoate) (20). To a solution of 

anhydrous pyridine (0.5 mL, 6 mmol) and 5.5 M tBuOOH in decane (1.10 mL, 6 mmol), 

which was kept at –4 °C (ice-water-salt bath), a solution of oxalyl chloride (0.25 mL, 3 

mmol) in anhydrous pentane (5 mL) was added dropwise with a cannula over a period 

of 15 min. Since stirring ceased, more anhydrous pentane (5 mL) was added to the 

reaction. Then, the reaction was allowed to warm up in a water bath for about 10 

minutes. Afterwards, it was filtered through a 1.5 cm pad of Celite on a coarse glass frit. 

This filtrate was cooled to –78 °C for about 15 min. in a dry ice-acetone bath to obtain a 

fine white crystalline solid that was separated from the solution. The fine white crystals 
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dissolved at room temperature. Repeated recrystallization in pentane –29 °C was 

carried out to obtain 0.316 g (45%) of 20 as colorless, thick, long, needle-like single 

crystals: mp 49–51 °C; IR (ν cm–1): 2984 (m), 2938 (w), 2876 (s), 1805 (s), 1744 (m), 

1653 (w), 1466 (w), 1369 (m), 1252 (m), 1204 (s), 1182 (s), 1121 (s), 1034(m), 930 (w), 

889 (m), 831 (m), 789 (w), 743 (w); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  1.37 (s, 18H, 

CH3); 13C{1H} NMR (400 MHz, CDCl3, 23 °C, ppm): 154.36 (C, delay time had to be 

increased to observe this peak; d1 = 5 s), 86.07 (C),  26.20 (CH3);  Anal. Calcd for 

C10H18O6: C, 51.27; H, 7.75. Found: C, 51.22; H, 7.70. 

 Preparation of Di-tert-butyl 4,6-dinitrobenzene-1,3-bis(carboperoxoate) (21). 

To a solution of anhydrous pyridine (0.065 mL, 1.50 mmol) and 5.5 M tBuOOH in 

decane (0.30 mL, 1.5 mmol) in a 100 mL Schlenk flask, which was kept at –4 °C (ice-

water-salt bath), a solution of 4,6-dinitroisophthaloyl dichloride (0.220 g, 0.75 mmol) in 

distilled dichloromethane (10 mL) was slowly added with a cannula. Then, the reaction 

was stirred for about 1 h while allowing it to warm up to 10 °C.  The reaction was 

concentrated and the product was purified by silica gel column chromatography with 9:1 

hexanes:ethyl acetate to obtain 0.223 g (74%) of 21 as a white solid. Recrystallization in 

toluene by slow evaporation resulted in 0.195 g (65%) of colorless, thick, needle-like 

single crystals of 21: mp 95 °C dec. before melting; IR (ν cm–1): 3117 (w), 3042 (w), 

2984 (m), 2936 (w), 2874 (w), 1775 (s), 1697 (w), 1605 (m), 1531 (s), 1474 (w), 1456 

(w), 1389 (w), 1368 (m), 1348 (s), 1295 (w), 1312 (w), 1261 (m), 1248 (w), 1200 (m), 

1182 (s), 1136 (w), 1011(s), 1078 (m), 1032 (w), 968 (m), 926 (m), 899 (w), 876 (m), 

835 (m), 818 (m), 773 (w), 758 (m), 746 (w), 719 (m); 1H NMR (400 MHz, CDCl3, 23 °C, 

δ):  8.72 (s, 1H, CH), 7.98 (s, 1H, CH), 1.37 (s, 18H, CH3); 13C{1H} NMR (101 MHz, 
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CDCl3, 23 °C, ppm): 161.03 (C), 148.43 (C), 132.15 (CH), 130.14 (C), 120.96 (CH), 

86.18 (C),  26.29 (CH3); Anal. Calcd for C16H20N2O10: C, 48.00; N, 7.00; H, 5.04. Found: 

C, 47.71; N, 6.97; H, 5.65. 

 Preparation of Tert-butyl 3,5-dinitrobenzoperoxoate (22). To a solution of 

anhydrous pyridine (0.13 mL, 3.0 mmol) and 5.5 M tBuOOH in decane (0.60 mL, 3.0 

mmol) in a 100 mL Schlenk flask, which was kept at –4 °C (ice-water-salt bath), a 

solution of 3,5-dinitrobenzoyl chloride (0.346 g, 1.50 mmol) in distilled diethyl ether (25 

mL) was added slowly with a cannula over a period of 5 min. Then, the reaction was 

stirred for about 1 h while allowing it to warm up to 10 °C. Afterwards, the reaction was 

allowed to warm up to room temperature (23 °C) and it was filtered through a 1.5 cm 

pad of Celite on a coarse glass frit. Then, the solvent was removed under reduced 

pressure to obtain 0.333 g (78%) of crude 22 as a beige solid. the product was purified 

by silica gel column chromatography with 20:1 hexanes:ethyl acetate to obtain 0.257 g 

(60%) of 22 as a white solid: mp 91–93 °C; IR (ν cm–1): 3422 (w), 3110 (w), 2982 (m), 

2943 (w), 2880 (w), 1761 (m), 1749 (m), 1694 (w), 1630 (m), 1539 (s), 1491 (m), 1458 

(m), 1389 (m), 1366 (m), 1342 (s), 1288 (m), 1252 (m), 1182 (m), 1132 (s), 1072 (m), 

1018 (m), 945 (m), 916 (m), 845 (m), 820 (m), 800 (m), 762 (w), 729 (m), 716 (s); 1H 

NMR (400 MHz, CDCl3, 23 °C, δ):  9.30–9.22 (m, 1H, CH), 9.07 (d, 2H, J = 1.6 Hz, CH), 

1.46 (s, 18H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 160.64 (C), 148.98 

(C), 131.54 (C), 129.18 (CH), 122.99 (CH), 85.74 (C),  26.42 (CH3); Anal. Calcd for 

C11H12N2O7: C, 46.48; N, 9.86; H, 4.26. Found: C, 46.26; N, 9.57; H, 4.57. Colorless, 

thick, long single crystals were grown by slow evaporation in toluene. 
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CHAPTER 4 

Synthesis, Characterization, and Study of Oxygen-Rich Geminal Hydroperoxides 

with Impressive Detonation Performances and Practically Useful Sensitivities  

4.1 Introduction 

 Geminal hydroperoxides (Figure 36) contain two hydroperoxy groups on the 

same carbon atom. They are a common class of peroxo-based compounds. Geminal 

hydroperoxides belong to the main peroxide sub-class of hydroperoxides. 

   

 

 
Figure 36. Structure of geminal hydroperoxides. 

 

4.1.1 Hydroperoxides 

 Hydroperoxides have the basic ROOH formula where the R group can be a 

primary, secondary or tertiary alkyl group. The pKa values of the hydroperoxides are 

lower than corresponding alcohols, which makes hydroperoxides stronger acids than 

alcohols and water. Ten hour half-life temperatures of dilute solutions of hydroperoxides 

are in the range of 133–172 °C. Thus, hydroperoxides are considered to be fairly 

thermally stable.39 

 Syntheses of hydroperoxides can be carried out using hydrogen peroxide and 

other organic peroxides. Hydrogen peroxide is used to synthesize a variety of different 

types of hydroperoxides with aldehydes, ketones, acetals, and ketals.86 The reactions of 

hydroperoxides can be categorized into two main types: (i) reactions without the 
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cleavage of the O–O bond where hydroperoxides react with aldehydes, ketones, acyl 

chlorides, anhydrides, etc. to produce different peroxides, and (ii) reactions with 

cleavage of the O–O bond where the cleavage of O–O bond can either be heterolytic or 

homolytic. Hydroperoxides are also capable of undergoing both oxidations and 

reductions. They are mainly used as oxidizing or reducing agents and polymerization 

initiators.86  

 tert-Butyl hydroperoxide and cumene hydroperoxide are two common 

commercially available hydroperoxides that are sold as dilute solutions. tert-Butyl 

hydroperoxide has been reported as an explosion hazard and is known to be shock 

sensitive at high concentrations.86 MEKP is a known high explosive mixture of 

hydroperoxides,74  and the energetic properties of MEKP were discussed in Chapter 1.  

4.1.2 Geminal Hydroperoxides 

 The interest towards geminal hydroperoxides has increased recently due to their 

antiparasitic activity.115 Geminal hydroperoxides are also used as polymerization 

initiators and synthetic reagents in organic chemistry.116 A variety of different synthetic 

methods of geminal hydroperoxides using different catalysts like iodine, Lewis acids, 

and mineral acids have been reported.93,117 Yet, these geminal hydroperoxides have not 

been energetically characterized.  

 In this chapter, the synthesis, characterization, and the energetic properties of a 

series of geminal hydroperoxides 23–38 (Figure 37) are described. The O:C ratios of 

these geminal hydroperoxides are in the range of 0.40–1.33, which is higher than the 

tert-butyl peroxides and tert-butyl peroxy esters. Ring strain was varied using 5–7 

membered rings and a bicyclopentane ring system (27, 34, and 35). Based on the 
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preliminary sensitivity tests the geminal hydroperoxides 30–38 are highly sensitive and 

energetic compounds.  

 

 

Figure 37. The series of geminal hydroperoxides 23–38. 
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 We have selected the most sensitive and energetic geminal hydroperoxides 34–

36, and 38 and they were completely energetically characterized with the standard 

sensitivity tests and energetic calculations. Oxygen-rich geminal hydroperoxides with 

impressive detonation performances and lower sensitivities than the known peroxo-

based explosives were obtained in this study for potential use as HEDMs. 

4.2 Results and Discussion 

 Most of the geminal hydroperoxides in this study are the corresponding 

hydroperoxides of the tert-butyl peroxides in Chapter 2. Compounds 23–38 were 

synthesized to observe the effects of the increased oxygen content and ring strain on 

their energetic performances. Cyclopentane ring-based geminal hydroperoxides 31–33 

were oils. Since oils are unable to be energetically characterized, the solid tert-butyl 

peroxides 34 and 35 were synthesized to observe the effects of ring strain. Aromatic 

compounds 28 and 36 were synthesized to observe the effects of π-interactions on the 

stabilities and sensitivities of geminal hydroperoxides. 

4.2.1 Synthetic aspects 

Caution: Oxygen-rich organic peroxo-based compounds and high 

concentrations of aqueous H2O2 are potentially explosive and require handling with 

care. Reactions and other manipulations were performed in a fume hood behind a blast 

shield. Personal safety equipment was used whenever necessary: a face shield, leather 

gloves, and a leather apron. Interactions with strong acids, metals, metal salts, or easily 

oxidizable species were avoided to prevent hazardous decomposition reactions. All 

reactions were performed on small scales (≤ 350 mg) and at room temperature.  
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The syntheses of geminal hydroperoxides were carried out based on a published 

general procedure for geminal hydroperoxides (Scheme 7).95 Compounds 23, 28, 29, 

and 32 were synthesized based on the exact published procedures.95 Compounds 24, 

25, and 30 were obtained as dimers from recrystallization of the monomer products 

obtained from the reactions with cycloheptanone, cyclohexanone, and cyclopentanone, 

respectively, which were performed based on the published preocedures.95 

 

Scheme 7. Synthesis of geminal hydroperoxides. 

 Briefly, a solution of I2 in CH3CN was treated with 30–50 wt.% aqueous H2O2 

while the reaction was kept stirring at room temperature (23 °C). Then, the aldehyde or 

ketone was added and the reaction was stirred at room temperature (23 °C) for 5 h. 

Afterwards, the reaction was concentrated under reduced pressure and the product was 

purified by silica gel column chromatography. During the syntheses of different geminal 

hydroperoxides, slight variations of the general procedure in the reaction scale, 

equivalents of H2O2 per ketone/aldehyde group, reaction time, volume of CH3CN, and 

the chromatography mobile phase were required to obtain better yields. 

Geminal hydroperoxides 23–38 were obtained in moderate to high yields (Figure 

37). Compounds 26, 27, 31, and 33–38 are new geminal hydroperoxides obtained in 

this study. Geminal hydroperoxides 28 and 31–33 were isolated as colorless oils while 

23–27, 29, 30, and 35–38 were isolated as white solids. Compound 34 was a highly 

viscous and colorless wax-like solid. Compound 27 was the half reacted product of the 
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reaction between cis-1,5-Dimethylbicyclo[3.3.0]octane-3,7-dione and H2O2. The solid 

geminal hydroperoxides were re-crystallized to obtain X-ray quality single crystals either 

by slow evaporation (25, 29, and 34), layering (26, 27, and 36) or cooling the saturated 

solutions to –29 °C in the freezer (24 and 30). All geminal hydroperoxide single crystals 

obtained were colorless. They were in the forms of needles (24 and 26), planar 

diamonds (27 and 36), planar polygons (25, 29, and 30) or planar hexagons (34). 

Geminal hydroperoxide syntheses using cyclobutanone, benzene-1,3,5-tricarbaldehyde, 

cyclohexane-1,3,5-trione, and cyclohexane-1,2,3,4,5,6-hexaone based on the same 

general procedure were not successful. The highest O:C ratio safely obtained for the 

series of geminal hydroperoxides and for the whole study was 1.33 of 37 and 38. 

Geminal hydroperoxides 23–38 were characterized by 1H and 13C NMR 

spectroscopy, mass spectrometry, melting point analysis, and IR spectroscopy. 

Elemental analyses were performed for a few selected highly energetic compounds 

(34–36, and 38). When possible, X-ray crystal structures were obtained for complete 

characterization of the corresponding geminal hydroperoxides.  

4.2.2 Spectroscopy 

The 13C NMR peak of the carbon atom connected to the O–O group, the peroxy 

carbon peak, was used to confirm that a hydroperoxide was obtained. The chemical 

shift region for the peroxy carbons of geminal hydroperoxides 23–26, 28, 29, and 36–38 

in CDCl3 or CD3OD was 110.08–116.47 ppm. More deshielded chemical shifts were 

obtained for the strained cyclopentane ring-based geminal hydroperoxides 27 and 30–

35, which were in the range of 119.90–127.47 ppm.  
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The characteristic IR stretching frequencies of the geminal hydroperoxides are 

medium and broad O–H stretching modes in the range of 3100–3700 cm–1,118 medium 

or strong C–O stretching modes in the range of 1000–1300 cm–1, and weak O–O 

stretching modes in the range of 800–900 cm–1.96,97,98 There were broad and medium 

peaks in the region of 3067–3460 cm–1 for O–H stretching modes. Hydrogen bonding is 

responsible for the relatively low O–H stretching frequencies. Medium and/or strong 

peaks were present in the region of 1000–1300 cm–1 for C–O stretching modes. There 

were weak O–O stretching modes as well as strong peaks in the range of 800–1000 

cm–1 in the IR spectra of 23–38.  The strong peaks in the range of 800–1000 cm–1 

indicate coupling of C–O and O–O stretching modes.96,98   

4.2.3 X-Ray Crystal Structures 

X-ray crystal structures were obtained for the geminal hydroperoxides 24, 26, 27, 

29, 30, 34, and 36. Compound 34 crystallized as an adduct of diethyl ether. The X-ray 

crystal structure of 34·diethyl ether was disordered. An X-ray crystal structure of 38·H2O 

was obtained by our collaborators in the Klapötke group. Experimental crystallographic 

data are summarized in Table 22. Perspective views of the crystal structures are given 

in Figures 38–44. Selected bond lengths from the X-ray crystal structures are provided 

in Table 23. Lists of hydrogen bonds and short contacts of 24, 26, 27, 29, 30, and 36 

generated by Mercury 3.5.1 software are provided in Tables 24–26. The O–O bond 

lengths of the geminal hydroperoxides were in the range of the O–O bond lengths 

reported for dialkyl peroxides.99  
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Table 22. Experimental crystallographic data of 24, 26, 27, 29, 30, 34·diethyl ether, and 36. 

 24 26 27 29 30 34·diethyl ether 36 

Formula C14H26O6 C8H16O4 C10H16O5 C14H28O8 C20H36O12 C42H72O27 C4H5O4 

FW 290.35 176.21 216.23 324.36 468.49 1008.99 117.08 

Space group P 21 21 21 P 1 21/c 1 P 1 21/n 1 P 1bar P 1 21/n 1 P 1 21/n 1 P 1 21/c 1 

a (Å) 7.0415(6) 5.9681(4) 10.0706(13) 5.8158(6) 9.3130(6) 13.2439(8) 9.776(3) 

b (Å) 10.7330(9) 29.3919(18) 10.0083(13) 10.8732(11) 12.0164(8) 11.9066(7) 6.0458(16) 

c (Å) 20.1622(15) 5.9453(4) 10.6508(14) 13.8557(15) 20.6023(14) 34.029(2) 8.133(2) 

V (Å3) 1523.8(2) 907.58(11) 1020.7(2) 829.22(15) 2252.1(3) 5265.6(6) 471.9(2) 

Z 4 4 4 2 4 4 4 

T (K) 100(2) 100(2) 100(2) 100(2) 100(2) 100(2) 100(2) 

λ (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 

ρcalc (g/cm3) 1.266 1.290 1.407 1.299 1.382 1.273 1.648 

μ (mm–1) 0.098 0.102 0.113 0.106 0.114 0.107 0.152 

R(F)a (%) 3.36 6.23 3.46 3.62 4.39 12.69 3.28 

Rw(F)b (%) 7.51 17.05 11.13 15.02 15.74 34.40 13.55 

aR(F) = ∑║Fo│–│Fc║ ⁄ ∑│Fo│; bRw(F) = [∑w(Fo2 - Fc2)2/∑w(Fo2)2]1/2 
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Figure 38. Perspective view of 24 with thermal ellipsoids at the 50% probability level.  
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Figure 39. Perspective view of 26 with thermal ellipsoids at the 50% probability level.  
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Figure 40. Perspective view of 27 with thermal ellipsoids at the 50% probability level.  
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Figure 41. Perspective view of 29 with thermal ellipsoids at the 50% probability level.  
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Figure 42. Perspective view of 30 with thermal ellipsoids at the 50% probability level.  
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Figure 43. Perspective view of 34·diethyl ether with thermal ellipsoids at the 50% 
probability level.  
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Figure 44. Perspective view of 36 with thermal ellipsoids at the 50% probability level.  
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Table 23. The selected bond lengths (Å) of 24, 26, 27, 29, 30, 34·diethyl ether, and 36. 

Bond 24 26 27 29 30 34·diethyl ether 36 

O–O 1.4865(16) 1.464(2) 1.4657(9) 1.4574(6) 1.4638(9) 1.465(5) 1.4714(7) 

 1.4709(19) 1.463(2) 1.4672(9) 1.4652(5) 1.4796(8) 1.465(5) 1.4594(7) 

 1.4641(16)   1.4660(5) 1.4636(8) 1.472(5)  

    1.4669(5)  1.469(5)  

C=O   1.2207(11)     

C–O 1.428(2) 1.413(2) 1.4199(11) 1.4198(6) 1.4213(9) 1.423(5) 1.4115(8) 

 1.429(2) 1.440(2) 1.4207(11) 1.4153(6) 1.4184(9) 1.418(6) 1.4115(8) 

 1.4359(19)   1.4290(5) 1.4193(9) 1.422(5)  

 1.4405(18)   1.4178(6) 1.4155(9) 1.427(5)  

C–C (bridge)   1.5651(12)   1.552(6)  

C–CH3   1.533(3) 1.5272(12) 1.5260(7)  1.528(6)  

  1.534(3) 1.5283(12) 1.5264(8)  1.530(7)  
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Table 24. The list of short contacts of 24, 26, and 27. 

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

24 1 H13 O4 2.656 –0.064 

 2 H16 H1 2.372 –0.028 

 3 H2 O4 2.55 –0.17 

 4 O6 H5 2.407 –0.313 

 5 O6 O5 2.663 –0.377 

 6 H17 O5 2.205 –0.515 

 7 H11 O6 2.475 –0.245 

 8 H22 H3 2.331 –0.069 

 9 O3 O6 2.826 –0.214 

 10 O4 O5 2.857 –0.183 

26 1 O3 O2 2.989 –0.051 

 2 H7 O2 2.708 –0.012 

 3 H1 O1 2.68 –0.04 

 4 H16 O2 2.491 –0.229 

 5 O3 H3 2.213 –0.507 

 6 O4 O2 2.81 –0.23 

 7 O4 H2 1.976 –0.744 

 8 O4 H3 2.317 –0.403 

27 1 O1 H3 2.557 –0.163 

 2 H13 O4 2.652 –0.068 

 3 H13 O5 2.691 –0.029 

 4 O3 O5 2.804 –0.236 

 5 O3 H2 1.915 –0.805 

 6 H1 H2 2.278 –0.122 

 7 H9 H12 2.298 –0.102 

 8 O3 O1 2.69 –0.35 

 9 H1 O1 1.822 –0.898 

 10 H1 C1 2.792 –0.108 

 11 O5 H4 2.522 –0.198 
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Table 25. The list of short contacts of 29. 

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

29 1 H9 O1 2.565 –0.155 

 2 O4 O4 2.84 –0.2 

 3 O2 O7 2.954 –0.086 

 4 O2 H20 2.657 –0.063 

 5 O3 O6 2.988 –0.052 

 6 H4 O6 2.146 –0.574 

 7 H4 O7 2.577 –0.143 

 8 O4 O8 2.765 –0.275 

 9 O4 H20 1.891 –0.829 

 10 H9 H25 2.315 –0.085 

 11 O4 O5 2.775 –0.265 

 12 H4A O5 1.953 –0.767 

 13 H4A O6 2.487 –0.233 

 14 O2 H24 2.719 –0.001 

 15 O3 H24 2.655 –0.065 

 16 O3 H22 2.655 –0.065 

 17 O7 H18 2.567 –0.153 

 18 O8 O6 2.738 –0.302 

 19 O8 H18 1.925 –0.795 

 20 H20 H18 2.344 –0.056 

 21 O7 H24 2.715 –0.005 
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Table 26. The list of short contacts of 30 and 36. 

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

30 1 O1 O11 2.892 -0.148 

 2 H1 O11 2.252 -0.468 

 3 O5 O7 2.991 -0.049 

 4 O5 H19 2.328 -0.392 

 5 O5 O11 2.841 -0.199 

 6 H13 H26 2.38 -0.02 

 7 H2 H26 2.302 -0.098 

 8 H10 O8 2.551 -0.169 

 9 O6 O9 2.981 -0.059 

 10 O6 H28 2.394 -0.326 

 11 H36 O12 2.619 -0.101 

 12 C20 O12 3.195 -0.025 

 13 O1 O5 2.93 -0.11 

 14 O2 O6 2.813 -0.227 

 15 O7 O11 2.868 -0.172 

 16 O8 O12 2.826 -0.214 

36 1 O2 O2 2.912 -0.128 

 2 O4 O1 2.701 -0.339 

 3 O4 H1 1.865 -0.855 

 4 H2 H1 2.178 -0.222 

 5 H2 O1 1.902 -0.818 

 6 O1 H3 2.511 -0.209 

 7 O3 H3 2.617 -0.103 

 8 H5 C3 2.896 -0.004 
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Crystalline densities obtained for the geminal hydroperoxides 24, 26, 27, 29, 30, 

34·diethyl ether, and 36 in the range of 1.266–1.648 g/cm3 were higher than the tert-

butyl peroxides and tert-butyl peroxy esters. The crystalline density of 36 (1.648 g/cm3 

at 100 K) was the highest crystalline density obtained for the series of geminal 

hydroperoxides. It is higher than the densities of all the known peroxo-based explosives 

and slightly lower than orthorhombic (1.704 g/cm3 at 123 K) and monoclinic (1.713 

g/cm3 at 100 K) TNT.119 Since the molecular weights of 36 and TNT are similar (234.18 

and 227.14 g/cm3), 36 packs nearly as efficiently as TNT in the solid state. 

 X-ray crystal structures of geminal hydroperoxides 24, 26, 27, 29, 30, 34, and 36 

have hydrogen bonded networks, unlike tert-butyl peroxides and tert-butyl peroxy 

esters. They form stacks or layers held together mainly by intrastack or intralayer 

hydrogen bonding interactions, respectively (Figures 45 and 46). However, in the 

crystalline lattice of 24, the hydrogen bonds are in between the molecular layers. In the 

rest of the crystal structures, there are multiple short contacts (27, 34, and 36) or 

hydrophobic interactions (26, 29, and 30) in between the stacks or layers. Compound 

36 also contains C–H···π interactions (2.896 Å) in between the molecular layers (Figure 

47). The presence of stacks or layers allows dissipation of the energy by movement of 

stacks or layers with respect to each other upon initiation with various stimuli.81 Still, the 

presence of a large number of short contacts (27, 34, and 36), hydrogen bonds (24), or 

π interactions (36) between the stacks or layers could restrict the free movement and 

thus, energy dissipation. Hence, there could be no proper slip planes or stacks that can 

significantly reduce the sensitivities in the crystal structures of 24, 27, 34, and 36. There 
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are only weak hydrophobic interactions between stacks of 26, 29, and 30, which might 

result in low sensitivities to stimuli.  

 There are O–H···O and C–H···O hydrogen bonds in all of the X-ray crystal 

structures of geminal hydroperoxides. Compound 24 and 30 contain two intramolecular 

O–H···O hydrogen bonds (2.813–2.930 Å). The short contacts present in these crystal 

structures are O···O, H···H, and C···H contacts that are shorter or at the edge of their 

van der Waals radii (Tables 24–26).120 The O···O contacts (2.804–2.991 Å) and H···H 

(2.178–2.380 Å) contacts are present in all of the crystal structures. There are C···H 

contacts (2.808–2.817 Å) in the crystal structure of 34. The oxygen atoms of O–O 

trigger bonds from the hydroperoxy groups of 24, 26, 27, 29, 30, 34, and 36 are 

involved in many stabilizing intermolecular interactions that also hold the oxygen atoms 

in close proximity. They are involved in multiple O–H···O hydrogen bonds and O···O 

contacts, which can reduce the sensitivities. Figure 48 shows these stabilizing 

intermolecular interactions of 36. 

 

 

Figure 45. Hydrogen bonded (red and blue) molecular stacks of 29. 

Mercury 3.5.1 
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Figure 46. Hydrogen bonded (red and blue) molecular layers of 36. 

 

 

Figure 47. C–H···π interactions (blue) of 36. 

Mercury 3.5.1 

Mercury 3.5.1 
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Hydrogen and oxygen atoms of the neighboring molecules are shown by white and red 

asterisks, respectively. 
 

Figure 48. Intermolecular interactions (red) of the O–O trigger bonds of 36.  

 

4.2.4 Thermal Stability  

 Thermal stabilities of geminal hydroperoxides 23–38 were assessed using 

thermogravimetry (TGA/DTA). The decomposition temperatures (TDec) of 23–38 are 

provided in Table 27. TDec values of geminal hydroperoxides 23–38 were in the range of 

70–130 °C. The thermal stabilities of 23 and 33 are too low for HEDM applications. 

Compounds 24–32 and 34–38 were fairly thermally stable geminal hydroperoxides. The 

most thermally stable geminal hydroperoxide was the aromatic geminal hydroperoxide 

28 (TDec = 130 °C). Since most HEDM applications require decomposition temperatures 

to be ≥ 150 °C,2 more thermally stable geminal hydroperoxides need to be obtained. 

High thermal sensitivities of peroxo-based compounds arise from the weak O–O trigger 

bonds, which is highly disadvantageous for HEDM applications. 

Mercury 3.5.1 
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Table 27. Decomposition temperatures of 23–38. 

Compound TDec (°C) 

23 80 

24 125 

25 120 

26 110 

27 120 

28 130 

29 115 

30 110 

31 125 

32 90 

33 70 

34 117 

35 100 

36 112 

37 105 

38 117 

 

 CBS-4M electronic enthalpies were calculated for the more oxygen-rich geminal 

hydroperoxides 34–36 and 38. Gaussian09 software package was used to obtain these 

heats of formation values (ΔfH°) by our collaborators in the Klapötke lab.113 The ΔfH° 

values of 34–36 and 38  are provided in Table 28.  
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Table 28. Heats of formation values of 34–36 and 38. 

Compound ΔfH° (kJ/mol) 

34 –703.6 

35 –617.0 

36 –418.2 

38 –627.1 

 

 The ΔfH° values of geminal hydroperoxides 34–36 and 38 are all negative. They 

are in the range of –703.6 to –418.2 kJ/mol. The most positive ΔfH° value was obtained 

for 36, which indicates that it is the most energetic geminal hydroperoxide of 34–36 and 

38. 

4.2.5 Preliminary Qualitative Sensitivity Tests 

 Sensitivities of geminal hydroperoxides 23–38 were studied using the flame, 

hammer impact, sand paper friction, and electrostatic discharge (Tesla coil) tests. 

Although there were no significant variations in the test responses for the series of 

corresponding tert-butyl peroxides 1–15 in Chapter 1, sensitivity differences of 23–38 

were observable in the flame tests. No responses were obtained in the hammer and 

sand paper tests. Sudden, large, bright flames were obtained for the most sensitive 

compounds, which are the cyclopentane ring-based peroxides 30–33, the most strained 

octahydropentalene ring-based peroxides 34 and 33, and the most oxygen-rich 

peroxides 36–38. Compound 35 was the most sensitive geminal hydroperoxide, 

producing a sudden ball of flame with a sound. During the Tesla coil test, 35 produced a 

sudden bright flame upon providing an electrostatic discharge. 
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4.2.6 Standard Sensitivity Tests 

 Impact, friction, and electrostatic discharge sensitivities of the most sensitive and 

energetic solid geminal hydroperoxides 34–36 and 38 (based on the preliminary tests) 

were determined with a BAM drop hammer, BAM friction tester, and an electrostatic 

spark sensitivity tester using standard experimental methods by our collaborators in the 

Klapötke lab.29–34 Compound 37 was omitted due to the failure to confirm the structure 

with an X-ray crystal structure. Table 29 includes the impact, friction, and electrostatic 

discharge sensitivities of 34–36 and 38.  

Table 29. Impact, friction, and electrostatic discharge sensitivities of 34–36 and 38. 

Compound IS (J) FS (N) ESDS (J) 

34 2 5 0.2 

35 2 5 0.1 

36 3 < 5 0.25 

38 < 1 < 5 0.6 

 

 Based on the “UN Recommendations on the Transport of Dangerous Goods”,28 

34–36 and 38 are “very sensitive” towards impact. Compounds 34–36 and 38 are 

“extremely sensitive” towards friction. Still, the geminal hydroperoxides 34–36 are much 

lower in impact and friction sensitivities than the known peroxo-based explosives TATP, 

DADP, HMTD, and MEKP (Tables 3–6). Impact sensitivities < 1 J and friction 

sensitivities < 5 N could not be obtained in this study. Thus, the impact and friction 

sensitivities of compound 38 are comparable to the known peroxo-based explosives 

(Tables 3–6). All the geminal hydroperoxides 34–36 and 38 show electrostatic discharge 

sensitivity values that are much higher than the electrical discharges that can be 
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created by the human body (≤ 0.02 J)2 and they can be safely handled. Based on the 

sensitivities of 34–36 and 38, they can be categorized as primary explosives. 

 The impact and friction sensitivities of 34–36 and 38 do not vary much with the 

nature of the organic framework, since the O–O linkages act as trigger bonds that 

initiate decomposition upon cleavage. The solid state structures of highly sensitive 

TATP and DADP lack O–H···O hydrogen bonds and O···O close contacts, and contain 

only very weak O···H and C···H interactions.59 Stabilization achieved by I···O close 

contacts in the crystalline lattice was found to reduce the sensitivities of DADP.68 

Geminal hydroperoxides 34–36 and 38 contain many O–H···O hydrogen bonds and 

O···O contacts that can reduce the high activity of the O–O trigger bonds. Thus, they 

have lower sensitivities than the known peroxo-based explosives TATP and DADP.  

 However, they are all still highly sensitive to impact and friction stimuli. High 

oxygen contents are known to result in highly sensitive compounds.76,80 Thus, the high 

sensitivities of  34–36 and 38 might be due to the high peroxy O:C ratios that are in the 

range of 0.8–1.33. Compound 38 with the highest peroxy O:C ratio (1.33) demonstrates  

the highest impact and friction sensitivities. Although optimum sensitivities for primary 

explosives were not obtained with 34–36 and 38, they are still practically useful 

sensitivities for HEDM applications since typical primary energetic materials have 

impact and friction sensitivities of ≤ 4 J and ≤ 10 N, respectively.2 

4.2.7 Energetic Performance Calculations 

 The energetic performances of 34–36 and 38 were calculated using the EXPLO5 

V6.02 software (Table 30) by our collaborators in the Klapötke lab.114 These calculated 

VDet and PDet values of 34–36 and 38 are in the range of 6150–7170 m/s and 117–195 
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kbar, respectively. They are high detonation performances, which are useful for HEDM 

applications. 

Table 30. Calculated energetic properties of 34–36 and 38. 

Property 34 35 36 38 

Formula C10H18O8 C9H16O8 C8H10O8 C6H12O8 

FW (g/mol) 266.28 252.25 234.18 212.18 

Ωa (%) –126.20 –114.18 –88.83 –75.41 

ρb (g/cm3) 1.273 - 1.648 1.602 

ρc (g/cm3) 1.35d 1.375 d 1.60 1.40 d 

     

EXPLO5 V6.02     

ΔExU° (kJ/kg) –4636 –4875 –5498 –5329 

PDet (kbar) 117 126 195 155 

VDet (m/s) 6150 6250 7130 6700 

Vo (L/kg) 829 831 688 847 

aOxygen balance for oxidation of carbon to CO2  
bCrystalline density at 100 K 
cCrystalline densities at 298 K (for energetic calculations) 

( )[ ]TTK −+= 2981298 ναρρ  (T = 100 K, ρT = Desnsity at 100 K, αν = 1.5 x 10–4 K–1) 
dSolvent free estimated crystalline density at 298 K (for energetic calculations) 

 
 The calculated detonation velocities of 34–36 and 38 are greater than the 

detonation velocities of all the known peroxo-based explosives (4,511–5,300 m/s).6b,35 

Compound 36 has the highest crystalline density (1.648 g/cm3) and also the highest 

detonation velocity (7130 m/s) of the geminal hydroperoxides 34–36 and 38. The 
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detonation velocity of 36 is highly impressive for HEDM applications and it surpasses 

the detonation velocity of TNT (6,900 m/s),11b which is a secondary high explosive.  

 The increase in detonation velocities along the series 34 to 36 is parallel to the 

increasing O:C ratios and increasing crystalline densities. The high ring strain of the 

octahydropentalene ring-based geminal hydroperoxides 34 and 35 caused no increase 

in their detonation performances since the lower crystalline densities have primarily 

determined the detonation performance. Although the oxygen content is the highest in 

compound 38, the crystalline density is lower than 36. Thus, the detonation 

performance of 38 is lower than for 36. 

4.3 Conclusions  

 Geminal hydroperoxides 23–38 were synthesized in moderate to high yields 

and were fully characterized. The O:C ratios of these geminal hydroperoxides are in 

the range of 0.40–1.33. Sensitivities and energetic performances of 23–38 were 

studied for their use as HEDMs. The sensitivities of 23–38 increase with the oxygen 

content and the ring strain based on the preliminary sensitivity tests.   

 Compounds 34–36 and 38 were the most energetic compounds in the study. 

Their detonation velocities are in the range of 6150–7170 m/s. These are impressive 

detonation velocities for their use as HEDMs. The impact and friction sensitivities of 34–

36 and 38 are high and they can be categorized as primary explosives. However, the 

sensitivities of 34–36 are much lower than the known peroxo-based explosives due to 

the relatively stabilized O–O trigger bonds with the O–H···O hydrogen bonds and O···O 

contacts. These sensitivities of 34–36 are practically useful although they are 

higher than the optimum sensitivities for primary explosives. Compound 38 with the 
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highest O:C ratio (1.33) has impact and friction sensitivities comparable to the known 

peroxo-based explosives. This indicates that the peroxy O:C ratio that is safe to handle 

is approximately 1.00. This work demonstrates that through careful manipulation of 

organic peroxide structures compounds with useful energetic materials properties can 

be obtained. 

4.4 Experimental Section  

General Considerations: Syntheses of all organic peroxides were carried out at 

room temperature under ambient atmosphere. Chemicals were purchased from Sigma-

Aldrich, Acros Organics, EMD, or Alfa Aesar and were used without further purification. 

ACS grade solvents were obtained from EMD and Fisher Scientific. Petroleum ether 

used in the synthetic protocols was with a boiling point range of 35–60 °C. A 50 wt.% 

aqueous solution of H2O2 purchased from Sigma-Aldrich was used to synthesize the 

hydroperoxides. Geminal hydroperoxides have been synthesized using a modified 

published general procedure for geminal hydroperoxides.95 Compounds 23, 28, 29, and 

32 were synthesized based on the exact published procedures.95 Compounds 24, 25, 

and 30 were obtained as dimers from recrystallization of the products obtained from the 

reactions with cycloheptanone, cyclohexanone, and cyclopentanone based on the 

published preocedures.95 

 Silica gel 60, 230–400 mesh (EMD Chemicals) was used to perform silica gel 

column chromatography.104 ASTM TLC plates precoated with silica gel 60 F254 (250 μm 

layer thickness) were used for thin-layer chromatography (TLC). TLC spots were 

observed using a UV lamp and/or a potassium permanganate solution as a stain (3 g 
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KMnO4, 20 g K2CO3, 5 mL 5% w/v aqueous NaOH, 300 mL H2O). The spots on the 

stained TLC plates were visualized after heating with a heat gun. 

1H and 13C{1H} NMR spectra were obtained from a Varian Mercury 400 (400 MHz 

and 101 MHz) NMR spectrometer or  MR 400 (400 MHz and 101 MHz) NMR 

spectrometer, in CDCl3 or CD3OD as indicated, and were referenced to the residual 

proton and carbon resonances of the solvent (CDCl3: 1H: δ 7.27, 13C: δ 77.23; CD3OD: 

1H: δ 3.31, 13C: δ 49.00). Mass spectra were obtained on an electrospray time-of-flight 

high-resolution Waters Micromass LCT Premier XE mass spectrometer. Infrared 

spectra were obtained from a Shimadzu MIRacle 10 IRAffinity-1 equipped with a single 

reflection ATR accessory. Melting points were determined on an Electrothermal IA 9300 

melting point apparatus and are uncorrected. Thermogravimetric (TGA/DTA) 

measurements to determine the decomposition temperatures of 23–33 and 37 were 

performed at a heating rate of 10 °C min−1 with an SDT-2960 TGA/DTA instrument. 

Thermogravimetric (TGA/DTA) measurements of 34–36 and 38 were performed at a 

heating rate of 5 °C min−1 with an OZM Research DTA 552-Ex instrument in the 

Klapötke lab. 

 Qualitative Sensitivity Tests: Qualitative sensitivities to heat, impact, and 

electrostatic discharge were determined to assess initial safety issues. Tests included 

burning about 3-5 mg of the compound in the Bunsen burner flame, striking 3-5 mg of 

the compound on a metal plate with a hammer, and passing an electrostatic discharge 

through 3-5 mg of the compound on a metal plate using an Electro Technic BD 10 Tesla 

coil (120 V, 0.35 A).  
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 Quantitative Sensitivity Tests: Quantitative sensitivity Tests include BAM 

drop hammer31 impact tests carried out according to STANAG 448929 modified 

instructions30 using approximately 0.4 mL of the compound, Friction tests with a 

BAM friction tester carried out according to STANAG 448732 modified 

instructions33 using approximately 5 mg of the compound, and electrostatic spark 

tests with an ESD 2010 EN, OZM Electric Spark Tester according to STANAG 

451534 instructions using 0.1 mL of the compound performed by the Klapötke 

group. 

 General Procedure for the Preparation of Geminal Hydroperoxides: A 

solution of I2 (0.025 g, 0.100 mmol, 0.1 equivalents per ketone/aldehyde group) in 

CH3CN (3–10 mL) was treated with a 50 wt.% aqueous solution of H2O2 (0.23 mL, 4.0 

mmol, 4 equivalents per ketone/aldehyde group) while the reaction was stirred at room 

temperature (23 °C). Afterwards, the ketone/aldehyde starting material (1 mmol of 

monoketone/monoaldehyde compound or 0.5 mmol of diketone/dialdehyde compound) 

was added and the reaction was stirred at room temperature (23 °C) for 5 h. Then, the 

reaction was concentrated under reduced pressure, redissolved in dichloromethane (10 

mL), and anhydrous Na2SO4 was added to dry the solution. The dichloromethane 

solution was again concentrated and the product was purified by silica gel column 

chromatography with 4:1 dichloromethane:ethyl acetate.  

Preparation of 4-(tert-Butyl)-1,1-dihydroperoxycyclohexane (23). Compound 

23 was prepared in 84% yield as a white solid by a literature procedure95 starting from 

4-(tert-butyl)cyclohexan-1-one: mp 79–81 °C (lit95 79–81 °C); IR (ν cm–1): 3332 (broad, 

m), 2952 (s), 1440 (w), 1367 (m), 1281 (w), 1254 (w), 1194 (m), 1127 (m), 1061 (s), 958 
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(m), 931 (m), 909 (m), 869 (w), 819 (w), 790 (w); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  

9.09 (s, 1H, OOH), 9.07 (s, 1H, OOH), 2.40–2.26 (m, 2H), 1.82–1.65 (m, 2H), 1.53–1.41 

(m, 2H), 1.32–1.19 (m, 2H), 1.11–1.02 (m, 1H), 0.87 (s, 9H, CH3); 13C{1H} NMR (101 

MHz, CDCl3, 23 °C, ppm):  111.06 (peroxy C), 47.59 (CH), 32.50 (C), 29.91 (CH2), 

27.79 (CH3), 23.54 (CH2). Thin, colorless, needle-like single crystals were grown by 

recrystallization from diethyl ether at –29 °C. 

 Preparation of 1,1'-Peroxybis(1-hydroperoxycycloheptane) (24). 

Cycloheptanone was treated with a 50 wt.% aqueous solution of H2O2 based on the 

general procedure for geminal hydroperoxides to obtain a colorless oil that crystallized 

into 0.209 g (72%) of 24 as thin, colorless, needle-like single crystals in a solution of 1:1 

CHCl3:hexanes at –29 °C: mp 71–73 °C (lit121 71–72 °C); IR (ν cm–1): 3424 (broad, m), 

2931 (s), 2921 (s), 2853 (m), 1708 (m), 1459 (m), 1353 (m), 1277 (m), 1179 (m), 1030 

(s), 1014 (s), 988 (m), 960 (m), 912 (s), 893 (m), 862 (m), 834 (s), 779 (m); 1H NMR 

(400 MHz, CDCl3, 23 °C, δ):  9.63 (s, 2H, OOH), 2.04–1.92 (m, 8H), 1.70–1.52 (m, 

16H); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 116.47 (peroxy C), 33.21 (CH2), 

30.04 (CH2), 22.98 (CH2).  

 Preparation of 1,1'-Peroxybis(1-hydroperoxycyclohexane) (25). 

Cyclohexanone was treated with a 50 wt.% aqueous solution of H2O2 based on the 

general procedure for geminal hydroperoxides to obtain a white solid that was 

crystallized by slow evaporation in hexanes to obtain 0.246 g (94%)  of 25 as colorless, 

planar, hexagonal single crystals: mp 79–81 °C (lit121 80–81 °C); IR (ν cm–1): 3420 

(broad, m), 3389 (w), 2942 (m), 2855 (w), 1713 (m), 1652 (m), 1559 (m), 1452 (m), 

1365 (m), 1264 (m), 1155 (m), 1057 (s), 949 (s), 929 (m), 913 (s), 850 (m), 822 (m), 784 
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(w); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  9.54 (s, 2H, OOH), 1.95–1.78 (m, 8H), 1.66–

1.39 (m, 12H); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm):  111.38 (peroxy C), 30.20 

(CH2), 25.54 (CH2), 22.68 (CH2). 

 Preparation of 1,1-Dihydroperoxy-4,4-dimethylcyclohexane (26). 4,4-

Dimethylcyclohexan-1-one was treated with a 50 wt.% aqueous solution of H2O2 based 

on the general procedure to obtain 0.148 g (84%) of 26 as a white solid: mp 80–82 °C; 

IR (ν cm–1): 3460 (broad, m), 3418 (broad, m) 2950 (m), 2923(m), 1684 (m), 1652 (m), 

1559 (m), 1457 (m), 1361 (m), 1278 (w), 1173 (m), 1038 (s), 933 (s), 890 (m) 851 (m); 

1H NMR (400 MHz, CDCl3, 23 °C, δ):  8.66 (broad s, 2H, OOH), 1.88 (t, 4H, J = 6.4 Hz), 

1.39 (t, 4H, J = 6.4 Hz), 0.96 (s, 6H, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 

111.22 (peroxy C), 35.33 (CH2), 30.02 (C), 27.99 (CH3), 25.87 (CH2). Colorless, long, 

needle-like single crystals were grown by layering a solution of 26 in CHCl3 with 

hexanes. 

 Preparation of 5,5-Dihydroperoxy-cis-3,6-dimethylhexahydropentalen-

2(1H)-one (27). cis-1,5-Dimethylbicyclo[3.3.0]octane-3,7-dione was treated with a 50 

wt.% aqueous solution of H2O2 based on the general procedure to obtain 0.158 g (73%) 

of 27 as a white solid: mp 115–117 °C; IR (ν cm–1): 3362 (broad, m), 3187 (broad, m), 

2970 (m), 2879 (w), 1722 (s), 1454 (m), 1431 (m), 1325 (w), 1254 (m), 1225 (m), 1138 

(w), 1039 (m), 993 (m), 929 (w), 884 (w), 860 (w), 822 (m); 1H NMR (400 MHz, CD3OD, 

23 °C, δ):  OOH resonance not observed due to exchange with CD3OD, 2.47 (d, 4H, J = 

19.6 Hz), 2.17 (d, 2H, J = 20.0 Hz), 2.09 (s, 4H), 1.12 (s, 6H, CH3); 13C{1H} NMR (101 

MHz, CD3OD, 23 °C, ppm): 220.47 (C), 119.90 (peroxy C), 51.97 (CH2), 48.63 (C), 

46.54 (CH2), 22.14 (CH3); ESI-HRMS: calcd for [C10H16O5Na]+ 239.0895; found 
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239.1043. Colorless, diamond-shaped single crystals were grown by layering a solution 

of 27 in methanol with hexanes. 

 Preparation of (Dihydroperoxymethyl)benzene (28). Compound 28 was 

prepared in 80% yield as a colorless oil by a literature procedure95 starting from 

benzaldehyde: IR (ν cm–1): 3424 (broad, m), 3095 (w), 3065(w), 3041 (w), 1659 (w), 

1495 (w), 1453 (m), 1342 (m), 1304 (m), 1196 (w), 1086 (w), 1023 (m), 984 (m), 923 

(w), 854 (w), 808 (w), 751 (s), 711 (s), 695 (s); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  

9.60 (s, 2H, OOH), 7.50–7.30 (m, 5H, CH), 6.30 (s, 1H, CH); 13C{1H} NMR (101 MHz, 

CDCl3, 23 °C, ppm): 132.71 (C), 129.83 (CH), 128.62 (CH), 127.17 (CH), 110.08 

(peroxy CH).  

 Preparation of 1,1-Dihydroperoxy-4-methylcyclohexane (29). Compound 29 

was prepared in 88% yield as a white solid by a literature procedure95 starting from 4-

methylcyclohexan-1-one: decomposes around 115 °C (lit95 mp 135 °C with 

decomposition); IR (ν cm–1): 3420 (broad, m), 2977 (m), 2962(m), 2944 (m), 2873 (w), 

1715 (m), 1651 (m), 1557 (m), 1471 (m), 1324 (w), 1185 (s), 1076 (s), 1013 (w), 971 (s), 

829 (s); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  9.16 (broad s, 2H, OOH), 2.26–2.16 (m, 

2H), 1.72–1.61 (m, 2H), 1.58–1.40 (m, 3H), 1.20 (q of d, 2H, J = 11.6, 4.0 Hz), 0.93 (d, 

3H, J = 6.8 Hz, CH3); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm): 111.38 (peroxy C), 

31.78 (CH), 30.77 (CH2), 29.24 (CH2), 21.60 (CH3). Large, thick, colorless, plate-like 

single crystals were grown by slow evaporation of a solvent mixture of 1:1:1 

hexanes:petroleum ether:diethyl ether. 

 Preparation of 1,1'-Peroxybis(1-hydroperoxycyclopentane) (30). 

Cyclopentanone was treated with a 50 wt.% aqueous solution of H2O2 based on the 



www.manaraa.com

143 
 

 

general procedure for geminal hydroperoxides to obtain a colorless oil that crystallized 

in to 0.218 g (93%) of 30 as colorless, polygonal single crystals in a toluene at –29 °C: 

mp 60–63 °C (lit121 60–63 °C); IR (ν cm–1): 3418 (broad, m), 2949 (m), 2872 (w), 1753 

(s), 1730 (s), 1711 (s), 1452 (m), 1435 (m), 1387 (m), 1368 (m), 1325 (m), 1306 (w), 

1252 (m), 1186 (s), 1179 (s), 1074 (s), 1059 (s), 1032 (m), 1013 (m), 972 (s), 947 (s), 

886 (m), 829 (m), 789 (m), 772 (w); 1H NMR (400 MHz, CD3OD, 23 °C, δ):  OOH 

resonance not observed due to exchange with CD3OD, 2.02–1.86 (m, 8H), 1.80–1.64 

(m, 8H). 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm):  121.63 (peroxy C), 34.37 (CH2), 

25.51 (CH2). 

 Preparation of 1,1-Dihydroperoxy-3-methylcyclopentane (31). 3-

Methylcyclopentan-1-one was treated with a 50 wt.% aqueous solution of H2O2 based 

on the general procedure and the product was purified by silica gel column 

chromatography with 10:1 dichloromethane:ethyl acetate and then 4:1  

dichloromethane:ethyl acetate to obtain 0.144 g (97%) of 31 as a colorless oil. IR (ν cm–

1): 3406 (broad, m), 2957 (s), 2871 (m), 1458 (m), 1435 (m), 1379 (w), 1312 (m), 1274 

(w), 1193 (m), 1150 (m), 1086 (w), 1023 (w), 971 (s), 928 (m), 829 (s); 1H NMR (400 

MHz, CD3OD, 23 °C, δ):  2.16–1.92 (m, 3H), 1.88–1.75 (m, 2H), 1.47–1.19 (m, 2H), 

1.99 (d, 3H, J = 6.4, CH3); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm):  121.66 

(peroxy C), 42.18 (CH2), 34.19 (CH), 33.76 (CH2), 20.02 (CH3). ESI-HRMS: calcd for 

C14H28O4Na 283.1885; found 283.1874. 

 Preparation of 1,1-Dihydroperoxycyclopentane (32). Compound 32 was 

prepared in 92% yield as a colorless oil by a literature procedure95 starting from 

cyclopentanone: IR (ν cm–1): 3389 (broad, m), 2959 (m), 2875 (m), 1708 (m), 1437 (m), 
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1384 (m), 1327 (m), 1196 (s), 1184 (s), 1075 (s), 969 (s), 868 (m), 828 (s); 1H NMR 

(400 MHz, CDCl3, 23 °C, ppm):  9.66 (s, 2H, OOH), 2.07–1.88 (m, 4H), 1.82–1.65 (m, 

4H); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm):  122.76 (peroxy C), 33.31 (CH2), 

24.77 (CH2).  

 Preparation of 4,4-Dihydroperoxycyclopent-1-ene (33). Cyclopent-3-en-1-one 

was treated with a 50 wt.% aqueous solution of H2O2 based on the general procedure 

on a 3 times larger scale to obtain 0.085 g (21%) of 33 as a colorless viscous oil. IR (ν 

cm–1): 3401 (broad, m), 3067 (w), 2928 (w), 2840 (w), 1712 (m), 1688 (m), 1651 (w), 

1622 (w), 1424 (m), 1397 (m), 1315 (s), 1236 (s), 1189 (w), 1075 (s), 1036 (m), 960 (s), 

875 (m), 839 (s), 779 (s); 1H NMR (400 MHz, CDCl3, 23 °C, δ):  9.82 (bs, 2H, OOH), 

5.63 (S, 2H, CH), 1.72 (s, 4H, CH2); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm):   

127.47 (CH), 121.24 (peroxy C), 39.66 (CH2).  

 Preparation of 2,2,5,5-Tetrahydroperoxy-cis-3,6-

dimethyloctahydropentalene (34). 3,6-Dimethyltetrahydropentalene-2,5(1H,3H)-dione 

was treated with a 50 wt.% aqueous solution of H2O2 (4.5 equivalents per 

ketone/aldehyde group) based on the general procedure on a 2 times larger scale and 

the product was purified by silica gel column chromatography with 20:1 

dichloromethane:methanol to obtain 0.061 g (21%) of 34 as a white solid: mp not taken 

due to explosion hazard; IR (ν, cm-1) 3365 (broad, m), 2965 (m), 2874 (m), 2808 (w), 

1688 (w), 1452 (m), 1431 (m), 1380 (m), 1319 (m), 1274 (s), 1225 (m), 1189 (m), 1156 

(m), 1125 (m), 1083 (m), 1045 (s), 1001, 993 (m), 982 (m), 945 (m), 901 (m), 866 (m), 

826 (s), 798 (m), 732 (w); 1H NMR (400 MHz, CD3OD, 23 °C, δ) OOH resonances not 

observed due to exchange with CD3OD, 2.18 (d, 4H, J = 14.8 Hz), 1.88 (d, 2H, J = 14.8 
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Hz), 1.01 (s, 6H, CH3); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm): 120.14 (peroxy 

C), 50.55 (C), 46.49 (CH2), 22.27 (CH3); Anal. Calcd for C10H18O8: C, 45.11; H, 6.81. 

Found: C, 44.90; H, 6.90. Colorless, planar, hexagonal crystals of 34 were grown by 

slow evaporation from diethyl ether. 

 Preparation of 2,2,5,5-tetrahydroperoxyoctahydropentalene (35). cis-1,5-

Dimethylbicyclo[3.3.0]octane-3,7-dione was treated with a 50 wt.% aqueous solution of 

H2O2 (8.5 equivalents per ketone/aldehyde group) based on the general procedure on a 

0.4 scale and the reaction mixture was concentrated under reduced pressure to obtain 

0.031 g (64%) of 35 as a crude white solid. In an attempt to purify the crude product by 

silica gel column chromatography with 4:1 dichloromethane:ethyl acetate, an explosion 

occurred upon solvent removal under reduced pressure: mp not taken due to explosion 

hazard; 1H NMR (400 MHz, CD3OD, 23 °C, δ) OOH resonances not observed due to 

exchange with CD3OD, 2.72–2.56 (m, 2H, CH), 2.18 (d of d, 4H, J = 14.4, 8.8 Hz), 1.86 

(d of d, 4H, J = 14.4, 5.6 Hz); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm): 122.10 

(peroxy C), 40.54 (CH), 39.03 (CH2). Anal. Calcd for C8H14O8: C, 40.34; H, 5.92. Found: 

C, 39.98; H, 5.77.  

 Preparation of 1,4-Bis(dihydroperoxymethyl)benzene (36). 

Terephthalaldehyde was treated with a 50 wt.% aqueous solution of H2O2 based on the 

general procedure on an 8 times larger scale to obtain 0.328 g (35%) of 36 as a white 

solid: mp. 108–110 °C; IR (ν, cm–1) 3236 (broad, m), 2944 (w), 2816 (w), 2797 (w), 2762 

(w), 2738 (w), 1699 (w), 1683 (w), 1413 (m), 1314 (m), 1201 (w), 1128 (w), 1033 (s), 

982 (s), 930 (w), 869 (m), 825 (w), 781 (s), 693 (s); 1H NMR (400 MHz, CD3OD, 23 °C, 

δ) OOH resonance not observed due to exchange with CD3OD, 7.45 (s, 4H, CH), 6.10 
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(s, 2H, CH); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm): 136.78 (C), 128.02 (CH), 

110.73 (peroxy CH); Anal. Calcd for C8H10O8: C, 41.04; H, 4.30. Found: C, 41.02; H, 

4.50. Colorless, diamond-shaped single crystals of 36 were grown by layering a solution 

of compound 36 in 1:1 THF:diethyl ether with hexanes. 

 Preparation of 2,2,5,5-Tetrahydroperoxyhexane (37). Hexane-2,5-dione was 

treated with a 50 wt.% aqueous solution of H2O2 based on the general procedure on a 2 

time larger scale. Then, dichloromethane (10 mL) was added to the reaction mixture 

and it was concentrated under reduced pressure. The aqueous layer was separated 

from the dichloromethane layer by decanting it. This aqueous layer was dissolved in 

methanol and was concentrated under reduced pressure. Then, the product was 

purified by silica gel column chromatography with 10:1 dichloromethane:methanol to 

obtain 0.045 g (21%) of 37 as a white solid: mp 121–123 °C; IR (ν cm–1): 3381 (broad, 

m), 3315 (broad, m), 2955 (w), 2916 (w), 1371 (s), 1293 (m), 1223 (s), 1099 (s), 1071 

(s), 889 (m), 855 (m); 1H NMR (400 MHz, CD3OD, 23 °C, δ):  1.79 (s, 4H, CH2), 1.33 (s, 

6H, CH3); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm): 111.71 (C), 28.92 (CH2), 18.37 

(CH3). 

 Preparation of 1,1,4,4-Tetrahydroperoxycyclohexane (38). Cyclohexane-1,4-

dione was treated with a 50 wt.% aqueous solution of H2O2 based on the general 

procedure on a 2 times larger scale and the reaction mixture was concentrated under 

reduced pressure to afforded a crude white precipitate. This precipitate was separated 

by filtration and was washed with CH3CN (10 mL) to obtain 0.102 g (47%) of 38 as a 

white solid: mp not taken due to explosion hazard; IR (ν, cm–1) 3308 (broad, m), 2929 

(broad, m), 2627 (w), 2529 (w), 1710 (s), 1407 (s), 1304 (m), 1195 (s), 1174 (s), 1072 
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(m), 957 (m), 909 (s), 800 (m). Anal. Calcd for C6H12O8: C, 33.97; H, 5.70. Found: C, 

33.61; H, 6.03; 1H NMR (400 MHz, CD3OD, 23 °C, δ) 10.63 (broad s, 4H, OOH), 1.86 

(s, 8H, CH2); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm) 109.83 (peroxy C), 26.73 

(CH2). Purification or crystallization of 38 was not carried out due to explosion hazard.  
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CHAPTER 5 

Tuning the Impact and Friction Sensitivities and Energetic Performances of a 

Series of Well-Characterized Cyclic Hydroperoxy Compounds 

5.1 Introduction 

5.1.1 Sensitivities and Energetic Performances of Peroxo-Based Compounds 

 TATP, DADP, HMTD, and MEKP are the only peroxo-based compounds that 

have been energetically characterized, but these compounds are also known to be 

extremely sensitive to impact and friction, which hinders their applications as 

HEDMs.35,36 For the applications of peroxo-based oxygen-rich compounds as safer 

HEDMs, the impact and friction sensitivities need to be reduced. Also, the energetic 

properties of peroxo-based oxygen-rich compounds need to be more systematically 

studied to understand and improve the low detonation performances of TATP, DADP, 

HMTD, and MEKP (Tables 3–6).6b,35,64,65,73  

 There have been many attempts to reduce the high sensitivities of the known 

peroxo-based compounds using different strategies, without much success.122 Matyáš 

has used water and WD-40 oil as desensitizing agents to reduce the friction sensitivities 

of TATP, DADP, and HMTD.122a Although a significant reduction of friction sensitivity 

was observed with about 20 wt.% of water and WD-40 oil,122a  this could lead to 

reduced detonation performances as well. Contini has used low-melting paraffin wax as 

a phlegmatizing agent with TATP and DADP to perform enthalpies of combustion and 

formation using oxygen bomb calorimetry.122b Recently, co-crystallization has been 

employed to use complex solid state characteristics to influence the density, oxygen 

balance, and sensitivity of peroxo-based co-crystals of DADP.68 The presence of 
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stabilizing I···O interactions in the crystalline lattice of 1,3,5-triiodo-2,4,6-trinitrobenzene 

(TITNB) and DADP cocrystals has resulted in lower sensitivities of both components.68b 

However, little is understood about how these solid-state interactions affect the physical 

properties of materials. Also, many different solid-state characteristics may act 

simultaneously to influence the physical properties. Thus, the predictability and fine 

tuning capability of impact and friction sensitivities through solid-state interactions are 

low. 

 The low detonation performances of TATP, DADP, HMTD, and MEKP have also 

resulted in avoidance of research development on peroxo-based oxygen-rich 

compounds to develop HEDMs.2,35  The difficulty in increasing the oxygen balance 

without increasing the sensitivities, low crystalline densities, and low thermal and 

chemical stabilities are the difficult challenges to overcome for better performing peroxo-

based HEDMs.2,35,68 

 Herein, we have synthesized a series of cyclic hydroperoxy compounds to study 

and understand how structural variations can be used to tune the impact and friction 

sensitivities and the energetic properties of peroxo-based compounds. The structural 

variations are more convenient to control and the resultant properties are more 

predictable once the structure and function relationships are understood. The synthesis 

and study of the properties of stable five- and six-membered cyclic peroxo-based 

compounds have been popular among the organic research community.123 

5.1.2 Five- and Six-Membered Cyclic Peroxides 

 Interest in five- and six-membered cyclic peroxides such as tetroxanes, 

trioxanes, dioxanes, trioxolanes, and dioxolanes (Figure 49) has been due to their 
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presence as structural units in natural products and antimicrobial, antiproliferative, and 

antitumor activities.123,124 Hydroperoxy dioxolanes have been employed as oxidizing 

agents.125 Still, no study has been carried out to discover the energetic properties of 

these oxygen-rich cyclic peroxides.  
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Figure 49. Five- and six-membered cyclic peroxides. 

 

 The reactions of β- and γ-diketones with H2O2 were studied in detail where 

structures and properties of oxygen-rich hydroperoxy dioxolanes and dioxanes were 

further discussed.126 Milas has reported that the hydroperoxy dioxolanes and dioxanes 

obtained by the reactions between 2,4-pentanedione and 2,5-hexanedione with H2O2 

were highly brisant and shock sensitive compounds.126b,c In these reactions between the 

diketones and H2O2, cyclic peroxides with hydroxy groups or both hydroxy and peroxy 

groups were also obtained.126 The energetic properties of even these highly oxygen-rich 

cyclic hydroxy and/or hydroperoxy compounds were not studied.   

 In this Chapter, different β- and γ-diketones were chosen to react with H2O2 for 

the synthesis of a series of oxygen-rich cyclic hydroperoxy compounds. Dihydroperoxy 

compounds 39–43 (Figure 50) and hydroperoxy compounds 44–48 (Figure 51) were 
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obtained for a systematic study of their sensitivities and energetic properties. In the 

hydroperoxy dioxanol 44 and dioxolanols 45–48, there is a hydroxy group instead of a 

hydroperoxy group of the dihydroperoxy dioxane 39 and dioxolanes 40–43.  

 

 

 
Figure 50. Dihydroperoxy dioxane 39 and dioxolanes 40–43.  

 

 

 

 
Figure 51. Hydroperoxy dioxanol 44 and dioxolanols 45–48. 
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 The O:C ratios of these cyclic hydroperoxy compounds were in the range of 

0.71–1.20. Dihydroperoxy dioxane 39 and dioxolanes 40–43 contain one more oxygen 

atom than the corresponding hydroperoxy dioxanol 44 and dioxolanols 45–48. All of the 

solid cyclic hydroperoxy compounds were fully characterized without structural 

ambiguities with X-ray crystal structures. Their stereochemistry was assigned based on 

the X-ray crystal structures. The oxygen content, ring strain, and steric strain were 

varied to observe the effects on their sensitivities and energetic performances. 

Interestingly, we have discovered that the impact and friction sensitivities and energetic 

properties of peroxo-based compounds can be tuned through these structural 

variations. 

5.2 Results and Discussion 

 The dihydroperoxy compounds 39–43 and hydroperoxy compounds 44–48 all 

contain relatively high oxygen contents similar to the more oxygen-rich geminal 

hydroperoxides of Chapter 5. Compounds 43 and 48 are the highest oxygen containing 

dihydroperoxy and hydroperoxy compounds. The effect of a more stable hydroxy group 

in place of a hydroperoxy group can be studied by comparison of the energetic 

properties of the corresponding hydroperoxy and dihydroperoxy compounds. The 

dihydroperoxy compound pair 39 and 42 and hydroperoxy compound pair 44 and 47 

can be used to observe the effects of increased ring strain. The dihydroperoxy 

compound pair 40 and 41 and hydroperoxy compound pair 45 and 46 can be used to 

observe the effects of increased steric strain. Compounds 40 and 45 are the only cis-

compounds obtained in this study. The rest of the dihydroperoxy and hydroperoxy 

compounds are trans.  
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5.2.1 Synthetic Aspects 

Caution: Organic peroxo-based compounds and high concentrations of aqueous 

H2O2 are potentially explosive and require handling with care. Reactions and other 

manipulations were performed in a fume hood behind a blast shield. Personal safety 

gear was used whenever necessary: a face shield, leather gloves, and a leather apron. 

Interactions with strong acids, metals, metal salts, or easily oxidizable species were 

avoided to prevent hazardous decomposition reactions. All reactions were performed on 

small scales (≤ 300 mg) and at room temperature.  

 The two series of cyclic peroxo-based oxygen-rich compounds were synthesized 

by treating the corresponding diketones with H2O2 in the presence of a catalyst at or 

below room temperature (Scheme 1) and the products (except 39, 41, and 43) were 

purified by silica gel column chromatography to obtain moderate yields. Compounds 39, 

41, and 43 were purified by direct re-crystallizations also to obtain moderate yields.  

 Iodine was used as the catalyst in the syntheses of 39, 40, 42, and 45–47 based 

on a modified published procedure for geminal hydroperoxides.95 Briefly, a solution of I2 

in CH3CN and H2O2 was treated with the corresponding diketone, and the reaction was 

stirred at room temperature for 5–24 h. Iodine was the preferred catalyst due to the low 

cost, safety, and high efficiency observed in the reactions.95 Compound 39 was purified 

by re-crystallization in a concentrated solution of methanol at –29 °C while the 

compounds 40, 42, and 45–47 were purified by silica gel column chromatography using 

dichloromethane and/or dichloromethane and ethyl acetate solution mixtures as mobile 

phases. Compounds 39, 40, 42, and 45–47 were all obtained in moderate yields. 
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Scheme 8. Synthesis of cyclic dihydroperoxy and hydroperoxy compounds. 

 Synthesis of 41 was not possible using the iodine-based method, and the 

corresponding reaction only produced 46. A solution of H2O2 and a catalytic amount of 

concentrated H2SO4 acid was treated with 3,5-heptanedione and the reaction was 

stirred for 1 h at 0 °C to obtain the crude solid of 41. A low temperature was sufficient 

with the stronger H2SO4 acid catalyst for the reaction to proceed. This synthetic method, 

which uses concentrated H2SO4 acid as the catalyst, was rapid and produced 41 

exclusively. Compound 41 was recrystallized by slow evaporation in diethyl ether, and 

pure 41 was obtained in a moderate yield. Compound 43 was synthesized using a 
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modified published procedure with the use of a catalytic amount of concentrated H2SO4 

acid as well.126c Briefly, a solution of H2O2 and a catalytic amount of concentrated 

H2SO4 acid was treated with 2,4-pentanedione and the reaction was stirred for 1 h, after 

which it was kept at 2–8 °C for 24 h. No additional solvent was used in these reactions. 

A longer reaction time was required for the synthesis of 43 with respect to 41. 

Purification of 43 was carried out by recrystallization in a solution mixture of 20:1 

dichloromethane:ethyl acetate at –29 °C to obtain 43 in a moderate yield. The 

hydroperoxy analogues 46 and 48 were not obtained in the H2SO4 acid-based synthetic 

methods of 41 and 43, revealing that the strong acid is able to catalyze the reaction all 

the way until three H2O2 molecules react to provide 41 and 43.  

 Since 44 was not obtained during the iodine-based synthetic procedure of 39, 

and 48 was not obtained in the concentrated H2SO4 acid-based procedure of 43, the 

Lewis acid catalyst SnCl2·2H2O was used as a heterogeneous catalyst in the syntheses 

of 44 and 48 based on a slightly modified published procedure for 43.125a Briefly, a 

mixture of the corresponding diketone in CH3CN and SnCl2·2H2O was treated with H2O2 

and the reaction was allowed to stir at room temperature for 18–24 h. Both 44 and 48 

were purified by silica gel column chromatography using a 4:1 dichloromethane:ethyl 

acetate solution mixture as the mobile phase. Compound 44 was only obtained in a low 

yield, since 39 was still the major product in the Lewis acid SnCl2·2H2O-based 

procedure. Compound 48 was obtained in a moderate yield. 

 Compounds 39–43 and 45–48 were all isolated as solids. Compound 44 was the 

only compound that was isolated as a colorless oil. The cyclic hydroperoxy compounds 

40–42 and 44–47 were new compounds obtained in this study. X-ray quality single 
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crystals were obtained by either cooling at –29 °C (39, 42, 43, 45, and 47) or slow 

evaporation (40, 41, 46, and 48) of saturated solutions of the corresponding crude (39, 

41, and 43) or purified (40, 42, and 45–48) compounds. All of the cyclic hydroperoxy 

compound single crystals obtained were colorless.  They were in the forms of plate-like 

(39, 46), needle-like (41), hexagonal (47), or polygonal (40, 45, 42, 43, and 48) single 

crystals.  

 Attempts to synthesize more oxygen-rich cyclic hydroperoxy compounds using 

diketones or dialdehydes with fewer carbons either resulted in oils that could be 

energetically characterized in our study or produced violent reactions. Thus, the highest 

O:C ratio that was safely achievable was 1.20. All compounds were characterized with 

1H and 13C NMR spectroscopy, infrared (IR) spectroscopy, and elemental analyses. 

Additionally X-ray crystal structures were obtained for all the solid cyclic hydroperoxy 

compounds 39–43 and 45–48. 

5.2.2 Spectroscopy 

 1H and 13C NMR spectra were obtained in CD3OD solutions and thus, the OOH 

and OH resonances were not observed due to exchange with CD3OD. The 

characteristic hydroperoxy-C and hydroxy-C 13C NMR peaks aided in identification of 

the dihydroperoxy compounds and hydroperoxy compounds, respectively. 13C NMR 

chemical shifts of hydroperoxy-Cs were in the range of 107.21–115.93 ppm and were 

more deshielded than the 13C NMR chemical shifts of hydroxy-Cs, which were in the 

range of 100.04–108.57 ppm. The differences of 1H and 13C NMR spectra based on the 

symmetry of the dihydroperoxy compounds versus hydroperoxy compounds was also 

important to differentiate these compounds, except in the case of 42 and 47. The fixed 



www.manaraa.com

157 
 

 

orientation of CH3 and H groups on the central carbon of compound 42 with respect to 

the functional groups on the sides with trans-stereochemistry changes the environment 

of the hydroperoxy-C atoms, resulting in different chemical shifts. But this chemical shift 

difference (1.86 ppm) is smaller than the mean chemical shift difference of hydroperoxy-

Cs and hydroxy-Cs (7.29 ppm). 

 Vibrational spectroscopy was also useful in characterization of the peroxo-based 

compounds. Compounds 39 and 44 have broad peaks at 3332 cm–1 and 3399 cm–1 for 

O–H stretching frequencies, respectively. These frequencies are in the region of 

hydrogen-bonded O–H stretching frequencies. Also, these values are close to each 

other and that indicates equal participation in hydrogen bonding. There is a significant 

difference in the O–H stretching region of the five-membered ring containing 

dihydroperoxy compounds 40–43 and the hydroperoxy compounds 45–48. The 

dihydroperoxy compounds 40–43 each contains only one broader peak for the O–H 

stretching frequency in the range of 3362–3414 cm–1. In contrast, the hydroperoxy 

compounds 45–48 contain two narrower peaks in the ranges of 3410–3455 cm–1 and 

3260–3333 cm–1. These frequencies might be corresponding to the two different 

hydroperoxy and hydroxy group O–H frequencies, respectively. The lower hydroxy 

group O–H frequencies indicate stronger hydrogen bonding interactions. The other 

characteristic IR stretching frequencies of the peroxo-based compounds are medium or 

strong C–O stretching modes in the range of 1000–1300 cm–1,96,97 and weak O–O 

stretching modes in the range of 800–900 cm–1.21 Compounds 39–43 and 45–48 all 

contain multiple medium and strong peaks in the region of 1000–1300 cm–1 for C–O 

stretching modes. The appearance of strong peaks in the range of 800–1000 cm–1 in the 
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IR spectra of 39–43 and 45–48 indicate strong coupling of C–O and O–O stretching 

modes as reported.96,98   

5.2.3 X-Ray Crystal Structures 

X-ray crystal structures were obtained for all of the solid cyclic hydroperoxy 

compounds 39–43 and 45–48. They were all normal structures without unusual 

interactions. No solvate crystals were obtained for the cyclic dihydroperoxy and 

hydroperoxy compounds. Experimental crystallographic data of the X-ray crystal 

structures of 39–43 and 45–48 are summarized in Tables 31 and 32, respectively. 

Perspective views of the crystal structures of 39–43 and 45–48 are given in Figures 52–

60. Selected bond lengths and bond angles from the crystal structures of 39–43 and 

45–48 are provided in Tables 33 and 34, respectively. The lists of hydrogen bonds and 

short contacts of 39–43 and 45–48 generated from Mercury 3.5.1 software are provided 

in Tables 35–38.  

The O–O bond lengths of the cyclic hydroperoxy compounds 39–43 and 45–48 

(Tables 33 and 34) were in the range of the O–O bond lengths reported for 

hydroperoxides.99 The crystalline densities of 39–43 are in the range of 1.387–1.469 

g/cm3, while the crystalline densities of 45–48 are in the range of 1.328–1.474 g/cm3. 

These crystalline densities are higher than that of the tert-butyl peroxides and tert-butyl 

peroxy esters, but lower than the geminal hydroperoxides 36 and 38 of Chapter 4. The 

crystalline densities of 43 and 48 are the highest from the cyclic dihydroperoxy and 

hydroperoxy compounds, respectively. The crystalline density of 48 is the highest 

crystalline density obtained for the cyclic hydroperoxy compounds. 
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Table 31. Experimental crystallographic data of 39–43. 

 39 40 41 42 43 

Formula C5H10O7 C14H28O12 C7H14O6 C6H12O6 C5H10O6 

FW 182.13 388.36 194.18 180.16 166.13 

Space group I -4 P b c a P 1 21/n 1 P b c a P 1 21/n 1 

a (Å) 14.0266(7) 12.6452(16) 5.6429(3) 8.1894(6) 5.5729(5) 

b (Å) 14.0266(7) 12.5922(15) 17.6201(9) 6.6753(4) 15.4498(12) 

c (Å) 8.7135(5) 23.364(3) 9.1491(5) 30.7184(19) 8.7244(7) 

V (Å3) 1714.3(2) 3720.3(8) 909.63(8) 1679.27(19) 751.17(11) 

Z 8 8 4 8 4 

T (K) 100(2) 100(2) 100(2) 100(2) 100(2) 

λ (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 

ρcalc (g/cm3) 1.411 1.387 1.418 1.425 1.469 

μ (mm–1) 0.136 0.122 0.125 0.129 0.138 

R(F)a (%) 2.93 3.05 3.80 4.50 6.18 

Rw(F)b (%) 8.83 8.22 10.93 12.54 23.33 

aR(F) = ∑║Fo│–│Fc║ ⁄ ∑│Fo│; bRw(F) = [∑w(Fo2 - Fc2)2/∑w(Fo2)2]1/2 
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Table 32. Experimental crystallographic data of 45–48. 

 45 46 47 48 

Formula C7H14O5 C7H14O5 C6H12O5 C5H10O5 

FW 178.18 178.18 164.16 150.13 

Space group P 1 21/n 1 P b c a P 1 21/n 1 P 1 21/n 1 

a (Å) 8.811(2) 9.9659(7) 7.6155(5) 8.6193(6) 

b (Å) 8.8031(18) 10.7296(7) 11.9510(8) 8.7945(6) 

c (Å) 11.281(3) 16.6680(12) 9.3339(6) 9.2016(6) 

V (Å3) 870.4(3) 1782.3(2) 779.08(9) 676.56(8) 

Z 4 8 4 4 

T (K) 100(2) 100(2) 100(2) 100(2) 

λ (Å) 0.71073 0.71073 0.71073 0.71073 

ρcalc (g/cm3) 1.360 1.328 1.400 1.474 

μ (mm–1) 0.116 0.113 0.123 0.134 

R(F)a (%) 4.85 3.01 3.57 3.62 

Rw(F)b (%) 13.71 9.15 9.41 12.61 

aR(F) = ∑║Fo│–│Fc║ ⁄ ∑│Fo│; bRw(F) = [∑w(Fo2 - Fc2)2/∑w(Fo2)2]1/2 
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Figure 52. Perspective view of 39 with thermal ellipsoids at the 50% probability level.  
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Figure 53. Perspective view of 40 with thermal ellipsoids at the 50% probability level.  

 
 
 
 
 
 



www.manaraa.com

163 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 54. Perspective view of 41 with thermal ellipsoids at the 50% probability level.  
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Figure 55. Perspective view of 42 with thermal ellipsoids at the 50% probability level.  
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Figure 56. Perspective view of 43 with thermal ellipsoids at the 50% probability level.  

 
 
 
 
 
 
 



www.manaraa.com

166 
 

 

 
 
 
 
 
 
 

 
 
 

Figure 57. Perspective view of 45 with thermal ellipsoids at the 50% probability level.  
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Figure 58. Perspective view of 46 with thermal ellipsoids at the 50% probability level.  
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Figure 59. Perspective view of 47 with thermal ellipsoids at the 50% probability level.  
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Figure 60. Perspective view of 48 with thermal ellipsoids at the 50% probability level.  
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Table 33. The selected bond lengths (Å) and angles (°) of 39–43. 

Bond/Angle 39 40 41 42 43 

O–O 1.4576(8) 1.4647(9) 1.4636(9) 1.464(3) 1.4579(12) 

 1.4613(8) 1.4635(9) 1.4764(9) 1.465(2) 1.4596(12) 

 1.4607(9) 1.4956(9) 1.4640(8) 1.482(2) 1.4750(10) 

C–O 1.4221(9) 1.4344(11) 1.4154(9) 1.442(3) 1.4242(13) 

 1.4252(9) 1.4144(10) 1.4278(9) 1.420(3) 1.4197(12) 

 1.4259(8) 1.4253(11) 1.4280(9) 1.427(3) 1.4239(13) 

 1.4128(9) 1.4243(11) 1.4171(9) 1.417(3) 1.4186(12) 

C–CH3 1.5134(11) 1.5139(13) 1.5188(11) 1.506(4) 1.5133(16) 

or 1.5182(12) 1.5292(13) 1.5162(11) 1.510(4) 1.5062(15) 

C–CH2CH3  1.5351(13)  1.507(4)  

  1.5198(14)    

Angles:      

Cring–O–Oring 107.34(5) 107.77(6) 103.43(5) 104.65(16) 103.59(7) 

 106.82(5) 108.32(6) 103.85(5) 103.20(16) 103.59(7) 

Cring–C–Cring 108.79(6) 100.32(7) 102.72(6) 101.8(2) 103.64(8) 

 109.08(6)     

Cring–C–Oring 110.53(6) 104.93(7) 105.40(6) 106.71(19) 105.12(7) 

 110.69(6) 104.40(7) 105.60(6) 104.19(19) 105.18(7) 

H3C–C–OOH 113.45(7) 110.56(8) 113.41(6) 112.7(2) 113.20(8) 

or 113.35(7) 111.31(8) 113.38(6) 112.7(2) 112.95(8) 

H3CH2C–C–OOH      
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Table 34. The selected bond lengths (Å) and angles (°) of 45–48. 

Bond/Angle 45 46 47 48 

O–O 1.4641(17) 1.4636(5) 1.4575(9) 1.4638(6) 

 1.4928(19) 1.4706(5) 1.4818(8) 1.4783(6) 

     

C–O 1.4401(19) 1.4381(6) 1.4326(10) 1.4324(7) 

 1.406(2) 1.4084(6) 1.4085(10) 1.4240(7) 

 1.4241(19) 1.4155(6) 1.4340(10) 1.4155(7) 

 1.433(2) 1.4284(5) 1.4243(10) 1.4339(7) 

C–CH3 1.510(3) 1.5199(7) 1.5129(12) 1.5106(8) 

or 1.525(2) 1.5196(6) 1.5239(12) 1.5159(8) 

C–CH2CH3 1.538(2)  1.5129(12)  

 1.512(3)    

Angles:     

Cring–O–Oring 106.85(12) 103.39(3) 102.45(6) 102.62(4) 

 107.97(12) 103.94(3) 103.94(6) 104.35(4) 

Cring–C–Cring 99.21(14) 103.35(3) 102.82(7) 103.03(4) 

Cring–C–Oring 105.05(14) 105.79(3) 103.20(7) 103.08(4) 

 104.69(14) 103.30(3) 105.43(7) 105.87(4) 

H3C–C–OOH or 111.08(15) 113.86(4) 112.44(7) 110.09(4) 

H3CH2C–C–OOH     

H3C–C–OH or 105.84(14) 112.60(4) 107.65(7) 112.50(5) 

H3CH2C–C–OOH     
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Table 35. The list of short contacts of 39 and 40.  

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

39 1 O1 O6 2.726 –0.314 
 2 O1 H2 1.954 –0.766 
 3 H1 H2 2.34 –0.06 
 4 O4 H6A 2.679 –0.041 
 5 H5 H5 2.387 –0.013 
 6 H6A O6 2.57 –0.15 
 7 O1 O4 2.877 –0.163 
 8 H1 O4 2.535 –0.185 
 9 H1 O6 2.076 –0.644 
 10 O3 O6 3.022 –0.018 
 11 O4 O6 2.94 –0.1 
 12 O4 H2 2.706 –0.014 

40 1 O2 H3 2.646 –0.074 
 2 H10 O4 2.523 –0.197 
 3 O1 O12 2.856 –0.184 
 4 H1 O12 1.991 –0.729 
 5 O2 O10 2.873 –0.167 
 6 O2 H16 2.172 –0.548 
 7 O3 O10 2.867 –0.173 
 8 O3 H16 2.133 –0.587 
 9 O4 O8 2.875 –0.165 
 10 O4 O9 2.844 –0.196 
 11 H2 O8 2.213 –0.507 
 12 H2 O9 2.117 –0.603 
 13 H2 H16 2.388 –0.012 
 14 O6 O7 2.855 –0.185 
 15 O6 H15 2.017 –0.703 
 16 O5 H18 2.628 –0.092 
 17 H11 O10 2.454 –0.266 
 18 O4 C13 3.169 –0.051 
 19 O4 H23 2.461 –0.259 
 20 O11 H18 2.659 –0.061 
 21 O12 H22 2.549 –0.171 
 22 H23 O8 2.585 –0.135 
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Table 36. The list of short contacts of 41–43.  

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

41 1 O4 H8 2.711 –0.009 
 2 O6 C1 3.199 –0.021 
 3 O6 O2 2.788 –0.252 
 4 H4 O1 2.462 –0.258 
 5 H4 O2 1.919 –0.801 
 6 O1 O5 2.783 –0.257 
 7 H3 O5 1.932 –0.788 
 8 H3 O6 2.413 –0.307 

42 1 C4 O5 3.188 –0.032 
 2 H3 O6 2.656 –0.064 
 3 H5 O5 2.683 –0.037 
 4 H11 O1 2.61 –0.11 
 5 O4 H9 2.679 –0.041 
 6 O2 O1 2.868 –0.172 
 7 O2 H1 2.001 –0.719 
 8 C1 H1 2.883 –0.017 
 9 H6 O6 2.585 –0.135 
 10 H5 O2 2.669 –0.051 
 11 O3 O4 2.915 –0.125 
 12 O3 H2 2.039 –0.681 
 13 O4 H2 2.692 –0.028 
 14 H4 O3 2.698 –0.022 
 15 H4 O5 2.701 –0.019 
 16 O1 H10 2.71 –0.01 

43 1 O1 O3 2.73 –0.31 
 2 H1 O3 1.752 –0.968 
 3 H1 O4 2.306 –0.414 
 4 H1 C3 2.9 0 
 5 O4 O2 2.727 –0.313 
 6 H2 O1 2.285 –0.435 
 7 H2 O2 1.707 –1.013 
 8 H2 C1 2.825 –0.075 
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Table 37. The list of short contacts of 45 and 46.  

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

45 1 O3 H9 2.606 –0.114 

 2 O1 H10 2.615 –0.105 

 3 O1 O3 2.746 –0.294 

 4 O1 H5 2.71 –0.01 

 5 H1 O3 1.885 –0.835 

 6 H1 H2 2.398 –0.002 

 7 H1 C3 2.733 –0.167 

 8 H1 H5 2.356 –0.044 

 9 O4 H11 2.72 0 

 10 O5 H11 2.599 –0.121 

 11 H6 O4 2.631 –0.089 

 12 O2 O3 2.732 –0.308 

46 1 O1 H9 2.652 –0.068 

 2 O4 O5 2.799 –0.241 

 3 O4 H3 1.994 –0.726 

 4 O2 O5 2.762 –0.278 

 5 H2 O5 1.941 –0.779 

 6 O3 H8 2.61 –0.11 
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Table 38. The list of short contacts of 47 and 48.  

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

47 1 O2 O5 2.722 –0.318 

 2 H2 O5 1.875 –0.845 

 3 H2 H3 2.394 –0.006 

 4 O3 H4 2.696 –0.024 

 5 O2 H11 2.6 –0.12 

 6 C5 H8 2.88 –0.02 

 7 H8 H8 2.382 –0.018 

 8 O1 O5 2.837 –0.203 

 9 O1 H3 2.047 –0.673 

 10 O1 H7 2.708 –0.012 

 11 O1 H10 2.549 –0.171 

 12 O2 H7 2.661 –0.059 

 13 H9 O3 2.51 –0.21 

 14 H1 O2 2.7 –0.02 

48 1 O3 O1 2.904 –0.136 

 2 H3 O1 2.033 –0.687 

 3 O5 H10 2.562 –0.158 

 4 H1 O1 2.667 –0.053 

 5 H8 O2 2.675 –0.045 

 6 O1 H7 2.719 –0.001 

 7 O3 O2 2.733 –0.307 

 8 O3 H2 1.823 –0.897 

 9 H9 O4 2.636 –0.084 

 10 H9 O5 2.712 –0.008 

 11 C2 H2 2.875 –0.025 

 12 H5 H2 2.373 –0.027 
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 The X-ray crystal structures of the cyclic hydroperoxy compounds 39, 41–43, and 

46–48 all have the more stable trans-geometry, which has lower torsional strain than 

the cis-geometry. However, 40 and 45 are both of cis-geometry according to the X-ray 

crystal structures. The cis-geometry of 40 and 45 minimizes the overall torsional strain 

by increasing the distance between the bulky methyl and –OOH groups, although the –

OOH groups are eclipsed. The angle strain is the lowest in 39 where the bond angles 

are close to the tetrahedral angle of 109.5°. The X-ray crystal structures of 40 and 45 

have Cring–C–Cring bond angles 100.32(7) and 99.21(14)° that are significantly smaller 

than the tetrahedral angle of 109.5°. This might be due to the presence of two methyl 

groups on the corresponding central carbon that need to be as far apart as possible to 

reduce the torsional strain. Thus, 40 and 45 are highly strained molecules with both 

torsional and angle strain. 

 The X-ray crystal structures of 39–43 and 45–48 all contain a variety of 

intermolecular interactions. They are O–H···O and C–H···O hydrogen bonds and O···O, 

O···H, H···H, C···H, and C···O short contacts (Tables 35–38). There is no significant 

difference between the molecular packing of the dihydroperoxy compounds 39–43 and 

the hydroperoxy compounds 45–48. However, the hydroperoxy compounds 45–48 lack 

one O–O trigger bond with respect to the dihydroperoxy compounds 39–43, which can 

result in reduced impact and friction sensitivities.  

 The O–H···O hydrogen bond distances are in the range of 2.610–2.915 Å and 

are present in all the X-ray crystal structures of 39–43 and 45–48. These are hydrogen 

bonds of moderate strength (4–14 kcal/mol).127 There is an intramolecular O–H···O 

hydrogen bond (2.732 Å) in the crystal structure of 45 (Figure 61). Except for 43, weak 
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C–H···O hydrogen bonds (< 4 kcal/mol)127 are also common for the crystal structures of 

39–42 and 45–48. The O···H distances of the C–H···O hydrogen bonds are in the range 

of 2.454–2.720 Å.  

 

 

Figure 61. Intramolecular O–H···O hydrogen bond (blue) of 45. 

 

 The multiple O···O, O···H, H···H, C···H, and/or C···O short contacts in the crystal 

structures of 39–43 and 45–48 are shorter or at the edge of their van der Waals radii 

(Tables 35–38).120 The O···O short contact distances are in the range of 2.844–3.223 Å, 

and are present in the crystal structures of 39, 40, 47, and 48. The O···O short contacts 

are relatively less abundant in these cyclic hydroperoxy compounds with respect to the 

geminal hydroperoxides. There are O···H contacts (2.117–2.706 Å) in the cyclic 

dihydroperoxy compounds 39–43. Short H···H contacts (2.373–2.387 Å) are present in 

the crystal structures of 39, 40, 45, 47, and 48. The X-ray crystal structures of 42, 43, 

45, and 47 contain C···H contacts (2.733–2.900 Å). The weak C···O contacts (3.169–

Mercury 3.5.1 
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2.199 Å) are the least abundant interactions in these X-ray crystal structures of cyclic 

hydroperoxy compounds, and are only present in 40–42.   

 Molecular stacks are formed through hydrogen bonds and other short contacts 

except for 40 and 45. In the crystal structures of 40 and 45, pairs of molecules interact 

mainly through O–H···O hydrogen bonds (Figure 62), which are then interconnected via 

many short contacts. In order to separate the bulky methyl groups of 40 and 45, the 

hydrogen bonded molecular pairs are separated creating void spaces in between, which 

can lead to high impact and friction sensitivities. 

 

 
 

Figure 62. Pairs of molecules interacting mainly through O–H···O hydrogen bonds 
(blue) in the crystal structures of 40 (left) and 45 (right). 

 
 

 The molecular stacks of 39, 41, 42, 47, and 48 are interconnected with a large 

number of short contacts and thus, the relative movements of the stacks with respect to 

each other could be restricted. Figure 63 shows molecular stacks without and with 

Mercury 3.5.1 
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interstack short contacts of the crystal structure of 41. Numerous short contacts might 

reduce the ability to dissipate energy upon initiation by impact and friction stimuli 

rendering the corresponding compounds more sensitive to stimuli. Compounds 43 and 

46 contain molecular stacks that are not interacting with each other by intermolecular 

short contacts, which can help the energy dissipation upon stimulus. Figure 64 shows 

these non-interacting molecular stacks of 43. All of the O–O trigger bonds in the X-ray 

crystal structures of 39–42 and 45–48 are involved in various intermolecular 

interactions, although the ring O–O bonds of 43 do not form any stabilizing interactions. 

Thus, 43 could still be highly sensitive despite the non-interacting molecular stacks that 

allow the energy dissipation when initiated.  

 

 
 

Figure 63. Molecular stacks of 41 without (left) and with (right) short contacts in 
between the stacks. 

Mercury 3.5.1 
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The intrastack hydrogen bonds and short contacts are shown in blue and red. 

 
Figure 64. Non-interacting molecular stacks of 43 along a (top) and c (bottom) 

directions. 
 

Mercury 3.5.1 

Mercury 3.5.1 
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 Although there are many stabilizing intermolecular interactions and non-

interacting molecular stacks in 43 and 46, the X-ray crystal structures of 39–43 and 45–

48 all lack the large conjugated π-systems and slip planes of the low sensitivity 

HEDMs.81,84 Thus, the cyclic hydroperoxy compounds can still be high sensitivity 

compounds. However, due to the multiple stabilizing interactions, they should have 

lower sensitivities than the extremely sensitive peroxide explosives TATP, DADP, 

HMTD, and MEKP.   

5.2.4 Thermal Stability 

 Thermal stabilities of cyclic hydroperoxy compounds 39–43 and 44–48 were 

assessed using thermogravimetry (TGA/DTA). Their decomposition temperatures (TDec) 

were obtained from the thermograms. CBS-4M electronic enthalpies were calculated 

using the Gaussian09 software package to obtain heats of formation values (ΔfH°) by 

our collaborators in the Klapötke lab.113 The TDec and ΔfH° values of 39–43 and 44–48 

are provided in Tables 39 and 40, respectively.  

Table 39. Decomposition temperatures and heats of formation values of 39–43. 

Compound TDec (°C) ΔfH° (kJ/mol) 

39 124 –541.2 

40 64 –542.7 

41 129 –538.7 

42 96 –529.6 

43 118 –509.1 
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Table 40. Decomposition temperatures and heats of formation values of 44–48. 

Compound TDec (°C) ΔfH° (kJ/mol) 

44 131 –627.2 

45 67 –646.5 

46 95 –641.6 

47 82 –615.4 

48 133 –590.7 

 
 The cyclic hydroperoxy compounds 39, 41–43, 44, and 46–48 are fairly thermally 

stable based on their decomposition temperatures. However, 40 and 45 have low 

thermal stabilities and thus, they are unsuitable for HEDM applications. These low 

thermal stabilities of 40 and 45 might be due to the high angle and torsional strain and 

arrangement of the molecules as hydrogen bonded pairs creating more voids in their 

crystal structures. 

 The ΔfH° values for the cyclic dihydroperoxy compounds 39–43 are in the range 

of –542.7 to –509.1 kJ/mol. They are all low and negative, although the oxygen contents 

are high. The ΔfH° values for the cyclic hydroperoxy compounds 44–48 are in the range 

of –646.5 to –590.7 kJ/mol. All the dihydroperoxy compounds 39–43 have more positive 

ΔfH° values with respect to the corresponding hydroperoxy analogues. This indicates 

that the cyclic dihydroperoxy compounds 39–43 are more energetic than the 

hydroperoxy compounds 44–48. The presence of the more stable hydroxy functional 

group in place of the hydroperoxy group has increased the overall stabilities of the cyclic 

hydroperoxy compounds 44–48 based on the ΔfH° values. 

 



www.manaraa.com

183 
 

 

5.2.5 Preliminary Qualitative Sensitivity Tests 

 Sensitivities of the cyclic hydroperoxy compounds 39–43 and 44–48 were 

studied using the flame, hammer impact, sand paper friction, and electrostatic discharge 

(Tesla coil) tests. For all the dihydroperoxy compounds 39–43, sudden, large, and bright 

flames were obtained in the flame tests, and sudden flames appeared in the Tesla coil 

tests. These flame and Tesla coil test responses indicate that 39–43 are highly sensitive 

and energetic compounds. The most sensitive cyclic hydroperoxy compound was 40 

based on the preliminary flame and the Tesla coil tests. This high sensitivity can be 

attributed to the high angle and torsional strain and arrangement of the molecules as 

hydrogen bonded pairs that create more voids in the crystalline lattice. 

 However, the sensitivity responses obtained for the cyclic hydroperoxy 

compounds 44–48, which contain only one less oxygen atom than the corresponding 

dihydroperoxy compounds, were much less aggressive. For 44–48, rapid and bright 

flames were observed in the flame tests and no positive responses were obtained in the 

Tesla coil tests. Thus, the cyclic hydroperoxy compounds 44–48 should be less 

sensitive to impact and friction stimuli than the dihydroperoxy compounds 39–43. 

Compounds 45 and 48 were slightly more sensitive and energetic than the rest of the 

cyclic hydroperoxy compounds based on the flame and the Tesla coil tests. Compound 

45 could be sensitive due to the high strain and poor crystal packing while 48 has the 

highest oxygen content among the cyclic hydroperoxy compounds 44–48.   Similar to 

the peroxo-based compounds of the previous Chapters, no positive responses were 

obtained in the hammer and sand paper tests of 39–43 and 44–48.  
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5.2.6 Standard Sensitivity Tests 

 Impact, friction, and electrostatic discharge sensitivities of the cyclic hydroperoxy 

compounds 39–43 and 44–48 were determined with a BAM drop hammer, BAM friction 

tester, and an electrostatic spark sensitivity tester using standard experimental methods 

by our collaborators in the Klapötke lab.29–34 Tables 41 and 42 include the impact, 

friction, and electrostatic discharge sensitivities of 39–43 and 44–48, respectively.  

Table 41. Impact, friction, and electrostatic discharge sensitivities of 39–43. 

Compound IS (J) FS (N) ESDS (J) 

39 < 1 < 5 0.15 

40 < 1 < 5 0.065 

41 2 < 5 0.15 

42 < 1 < 5 0.1 

43 < 1 < 5 0.5 

 

Table 42. Impact, friction, and electrostatic discharge sensitivities of 44–48. 

Compound IS (J) FS (N) ESDS (J) 

44 1 5 NM* 

45 2 6 0.1 

46 3 14 0.2 

47 1 40 0.2 

48 3 40 0.15 

*Not measurable since 44 is an oil 

 Based on the “UN Recommendations on the Transport of Dangerous Goods”,28 

the cyclic hydroperoxy compounds 39–43 and 44–48 are “very sensitive” towards 



www.manaraa.com

185 
 

 

impact. Compounds 39–45 are “extremely sensitive” and 44–48 are “very sensitive” 

towards friction. Thus, the cyclic hydroperoxy compounds 39–43 and 44–48 have 

appropriate impact and friction sensitivities to be categorized as primary explosives. 

Interestingly, there is a significant difference in the impact and friction sensitivities 

between the cyclic dihydroperoxy compounds 39–43 and hydroperoxy compounds 44–

48. The hydroperoxy compounds 44–48 have lower impact sensitivities than the 

dihydroperoxy compounds 39–43 that are useful for primary HEDMs. Most importantly, 

the optimum impact sensitivity values for primary explosives (≤ 3 J) were obtained for 

46 and 48.  The friction sensitivities of the hydroperoxy compounds 44–48 are also 

lower than the dihydroperoxy compounds 39–43. Especially, much lower friction 

sensitivities were obtained for 46–48. Since the optimum friction sensitivity values for 

primary explosives are ≤ 10 N, 46–48 can be categorized as primary explosives that 

can be safely handled.  

 Impact sensitivities < 1 J and friction sensitivities < 5 N could not be measured in 

the Klapötke lab. Thus, the impact and friction sensitivities of the dihydroperoxy 

compounds 39–43 are comparable to the known peroxo-based explosives TATP, 

DADP, HMTD, and MEKP (Tables 3–6). Interestingly, the impact and friction 

sensitivities of the hydroperoxy compounds 44–48 are much less than TATP, DADP, 

HMTD, and MEKP (Tables 3–6). The lack of one O–O trigger bond in 44–48 with 

respect to 39–43 has led to peroxo-based compounds that are practically useful as 

primary HEDMs.  

 The cyclic hydroperoxy compounds 39, 41–43, and 44–48 show electrostatic 

discharge sensitivity values that are much higher than the electrical discharges that can 
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be created by the human body (≤ 0.02 J)2 and they can be safely handled. However, 40 

has a very high sensitivity towards electrostatic discharge and could be a hazardous 

compound for practical use.  

 The dihydroperoxy compounds 39–43 contain many O–H···O and C–H···O 

hydrogen bonds and multiple short contacts, including the stabilizing O···O contacts, 

although TATP and DADP lack any of these stabilizing intermolecular contacts.59 Still, 

39–43 demonstrate high sensitivities comparable to TATP and DADP. The O:C ratios of 

39–43 are higher than TATP and DADP, which might have caused these high impact 

and friction sensitivities of 39–43, regardless of the stabilizing interactions. The impact 

and friction sensitivities of 39–43 and 44–48 do not vary much with the nature of the 

organic framework due to the predominant effect of the number of O–O trigger bonds 

that initiate decomposition upon cleavage. However, the electrostatic discharge 

sensitivity of 40 was higher than the other compounds. The higher ring and torsional 

strain and the presence of void spaces might influence the high sensitivities of 40. 

Compound 40 was the most sensitive cyclic hydroperoxy compound based on the 

preliminary sensitivity tests as well. The presence of stabilizing O···O contacts in the 

dihydroperoxy compounds 39 and 40 was not sufficient to reduce their high impact and 

friction sensitivities. However, the stabilizing O···O contacts in the hydroperoxy 

compounds 47 and 48 might have caused the lowest friction sensitivities (40 N) from the 

cyclic hydroperoxy compounds 45–48. The non-interacting molecular stacks of 46 might 

have caused the low impact and friction sensitivities, although the similar non-

interacting molecular stacks were not sufficient to reduce the impact and friction 

sensitivities of 43 due to the non-interacting O–O trigger bonds.  
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 According to the above mentioned observations, the ability of the intermolecular 

interactions in the solid state to reduce the impact and friction sensitivities becomes less 

as the peroxy O:C ratio of the peroxo-based compounds reaches approximately 1.00. 

Thus, increasing the peroxy O:C ratio to increase the energy content of the peroxo-

based compounds above 1.00 only will result in high sensitivity peroxides that are not 

practically useful. Hence, a better alternative to increase the oxygen contents on 

peroxo-based compounds would be the use of more stable functional groups like nitro 

groups, which were shown to be effective in Chapter 3, and hydroxy groups, which were 

important to reduce the sensitivities based on this Chapter. 

5.2.7 Energetic Performance Calculations 

  The energetic properties of the cyclic hydroperoxy compounds 39–43 and 45–48 

were calculated using the EXPLO5 V6.02 software (Table 43 and 44) by our 

collaborators in the Klapötke lab.114 These calculated VDet and PDet values of 39–43 are 

in the range of 6350–6694 m/s and 124–154 kbar, respectively. They are high 

detonation velocities, which are useful for HEDM applications. Unfortunately, the high 

impact and friction sensitivities of 39–43 are highly disadvantageous for their practical 

use. The calculated VDet and PDet values of 45–48 are in the range of 6100–6461 m/s 

and 98–136 kbar, respectively. The energetic properties of 44 could not be calculated 

since it was an oil. The detonation velocities of 45–48 are slightly inferior to 39–43, as 

expected, due to the lower oxygen contents of 45–48. However, the detonation 

velocities of the cyclic hydroperoxy compounds 45–48 have not been reduced by a 

large magnitude. Additionally, 45–48 have much lower impact and friction sensitivities 

based on the standard sensitivity tests. Since 45 is too low in thermal stability for HEDM 
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applications, cyclic hydroperoxy compounds 46–48 can be summarized as practical 

safer peroxo-based compounds for primary HEDMs applications.  

Table 43. Calculated energetic properties of 39–43. 

Property 39 40 41 42 43 

Formula C6H12O6 C7H14O6 C7H14O6 C6H12O6 C5H10O6 

FW (g/mol) 180.16 194.18 194.21 180.18 166.13 

Ωa (%) –106.57 –123.59 –123.59 –106.57 –86.68 

ρb (g/cm3) 1.411 1.387 1.418 1.425 1.469 

ρc (g/cm3) 1.37 1.35 1.38 1.38 1.43 

      

EXPLO5 V6.02      

ΔExU° (kJ/kg) –4885 –4748 –4783 –4952 –5133 

PDet (kbar) 130 124 132 134 154 

VDet (m/s) 6350 6357 6501 6511 6694 

Vo (L/kg) 853 871 869 853 840 

aOxygen balance for oxidation of carbon to CO2  
bCrystalline density at 100 K 
cCrystalline densities at 298 K (for energetic calculations) 

( )[ ]TTK −+= 2981298 ναρρ  (T = 100 K, ρT = Desnsity at 100 K, αν = 1.5 x 10–4 K–1) 

 
 The most energetic cyclic dihydroperoxy compound is 43 due to the highest 

crystalline density and the highest oxygen content. However, the impact and friction 

sensitivities of 43 are too high for HEDM applications. The calculated detonation 

velocities of 39–43 are greater than the detonation velocities of the known peroxide 

explosives TATP, DADP, HMTD and MEKP (4,511–5,300 m/s).6b,35 



www.manaraa.com

189 
 

 

Table 44. Calculated energetic properties of 45–48. 

Property 45 46 47 48 

Formula C7H14O5 C7H14O5 C6H12O5 C5H10O5 

FW (g/mol) 178.18 178.18 164.18 150.13 

Ωa (%) –143.67 –143.67 –126.70 –106.57 

ρb (g/cm3) 1.360 1.328 1.400 1.474 

ρc (g/cm3) 1.32 1.29 1.36 1.43 

     

EXPLO5 V6.02     

ΔExU° (kJ/kg) –3498 –3517 –3780 –4572 

PDet (kbar) 104 98 109 136 

VDet (m/s) 6100 5954 6103 6461 

Vo (L/kg) 876 878 864 842 

aOxygen balance for oxidation of carbon to CO2  
bCrystalline density at 100 K 
cCrystalline densities at 298 K (for energetic calculations) 

( )[ ]TTK −+= 2981298 ναρρ  (T = 100 K, ρT = Desnsity at 100 K, αν = 1.5 x 10–4 K–1) 

 
 The most energetic cyclic hydroperoxy compound is 48 due to the highest 

crystalline density and the highest oxygen content. Since the impact and friction 

sensitivities of 48 are in the optimum expected range, 48 is an excellent candidate as a 

safe primary HEDM. The detonation velocity of 48 is close to that of 43 due to the 

similar crystalline densities at 298 K. The calculated detonation velocities of 45–48 are 

also greater than the detonation velocities of the known peroxide explosives TATP, 

DADP, HMTD and MEKP (4,511–5,300 m/s).6b,35 
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 The effect of ring strain on the detonation velocities can be assessed using the 

compound pair 39 and 42 with the same O:C ratios. The more strained cyclopentane 

ring-based compound 42 has a higher detonation velocity with respect to 39. The effect 

of the steric strain on the detonation velocities can be assessed using the compound 

pair 40 and 41 along with 45 and 46. The compounds 40 and 45 have the more strained 

structures than 41 and 46, respectively. Based on the higher detonation velocity of 41 

with respect to 40, steric crowding was disadvantageous, since it caused a reduction in 

the crystalline density. However, the crystalline density of 46 was lower than 45 and 

thus, a lower detonation velocity was obtained for 46. There is a predominant effect 

from crystalline densities on the detonation velocities, which renders the differences in 

steric strain negligible.  

5.3 Conclusions 

 The series of oxygen-rich cyclic dihydroperoxy compounds 39–43 and 

hydroperoxy compounds 44–48 were synthesized to study their sensitivities and 

energetic properties. The solid cyclic hydroperoxy compounds were fully characterized 

by X-ray crystallography. The O:C ratios of these cyclic hydroperoxy compounds were 

in the range of 0.71–1.20.  

 Based on the low thermal stabilities and high sensitivities of 40, it is not useful for 

HEDM applications. Compound 45 was also too low in thermal stability for HEDM 

applications.  The dihydroperoxy compounds 39–43 have impressive calculated 

detonation velocities that are greater than the known peroxide explosives. However, 

their high sensitivities render them unsafe for HEDM applications. Interestingly, the 

hydroperoxy compounds 45–48 also have high detonation velocities even with the 



www.manaraa.com

191 
 

 

slightly lower oxygen contents than the corresponding dihydroperoxy compounds 39–

43. The hydroperoxy compounds 46 and 48 with high detonation velocities and optimum 

impact and friction sensitivities are attractive candidates for use as primary HEDMs.  

 Higher oxygen contents lead to higher energetic compounds. However, when the 

peroxy O:C ratio is approximately 1.00, peroxo-based compounds tend to become 

highly sensitive. This was observed previously with geminal hydroperoxides as well. 

Thus, the oxygen content in peroxo-based compounds should be increased with more 

stable functional groups such as nitro (similar to the tert-butyl peroxy esters 21 and 22) 

and hydroxy (similar to 46–48) groups to obtain more energetic peroxo-based 

compounds. Ring strain was useful in increasing the detonation velocities, although 

steric strain was not very useful. Increasing the steric strain not only increased the 

sensitivity of 40 and 45, but also reduced their thermal stabilities. Additionally, the lower 

crystalline density of 40 with respect to 41 decreased the detonation velocity.  

 According to this work with cyclic dihydroperoxy compounds 39–43 and 

hydroperoxy compounds 44–48 with many structural variations, we have understood 

that sensitivities and energetic properties of peroxo-based compounds could be tuned 

by careful structural manipulations of peroxo-based compounds to design peroxo-based 

HEDMs.  

5.4 Experimental Section 

 General Considerations: The syntheses of all cyclic hydroperoxy compounds 

were carried out at room temperature under ambient atmosphere. Chemicals were 

purchased from Sigma-Aldrich, Acros Organics, EMD, or Alfa Aesar and were used 

without further purification. ACS grade solvents were obtained from EMD and Fisher 
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Scientific. The syntheses of 39, 40, 42, and 45–47 were carried out using a modified 

published procedure for geminal hydroperoxides.95 The synthetic procedure for 39 was 

different from the general synthetic procedure of 40, 42, and 45–47. Compound 43 was 

synthesized using a modified published procedure.126c Compounds 44 and 48 were 

prepared based on a modified published procedure for compound 43.125a 

 Silica gel 60, 230–400 mesh (EMD Chemicals) was used to perform silica gel 

column chromatography.104 ASTM TLC plates precoated with silica gel 60 F254 (250 μm 

layer thickness) were used for thin-layer chromatography (TLC). TLC spots were 

observed using a UV lamp and/or a potassium permanganate solution as a stain (3 g 

KMnO4, 20 g K2CO3, 5 mL 5% w/v aqueous NaOH, 300 mL H2O). The spots on the 

stained TLC plates were visualized after heating with a heat gun. 

 1H and 13C{1H} NMR spectra were obtained from the Varian Mercury 400 (400 

MHz and 101 MHz) NMR spectrometer or  MR 400 (400 MHz and 101 MHz) NMR 

spectrometer, in CD3OD as indicated and were referenced to the residual proton and 

carbon resonances of the solvent (1H δ 3.31, 13C 49.00 ppm). Infrared spectra were 

obtained from a Shimadzu MIRacle 10 IRAffinity-1 equipped with a single reflection ATR 

accessory. Melting points were determined on an Electrothermal IA 9300 melting point 

apparatus and are uncorrected. Thermogravimetric (TGA/DTA) measurements to 

determine the decomposition temperatures of 39–43 and 44–48 were performed at a 

heating rate of 5 °C min−1 with an OZM Research DTA 552-Ex instrument. 

 Qualitative Sensitivity Tests: Qualitative sensitivities to heat, impact, and 

electrostatic discharge were determined to assess initial safety issues. Tests included 

burning about 3–5 mg of the compound in the Bunsen burner flame, striking 3–5 mg of 
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the compound on a metal plate with a hammer, and passing an electrostatic discharge 

through 3-5 mg of the compound on a metal plate using an Electro Technic BD 10 Tesla 

coil (120 V, 0.35 A). 

 Quantitative Sensitivity Tests: Quantitative sensitivity Tests include BAM 

drop hammer31 impact tests carried out according to STANAG 448929 modified 

instructions30 using approximately 0.4 mL of the compound, Friction tests with a 

BAM friction tester carried out according to STANAG 448732 modified 

instructions33 using approximately 5 mg of the compound, and electrostatic spark 

tests with an ESD 2010 EN, OZM Electric Spark Tester according to STANAG 

451534 instructions using 0.1 mL of the compound performed by the Klapötke 

group. 

 General Procedure for the Synthesis of 40, 42, and 45–47: A solution of I2 

(0.025 g, 0.100 mmol, 0.1 equivalents per ketone group) in CH3CN (10 mL) was treated 

with a 50 wt.% aqueous solution of H2O2 (0.17 mL, 3.0 mmol, 3 equivalents per ketone 

group) while the reaction was stirred at room temperature (23 °C). Afterwards, the 

diketone starting material (0.5 mmol) was added and the reaction was stirred at room 

temperature (23 °C) for 5 h. Then, the reaction was concentrated under reduced 

pressure, redissolved in dichloromethane (10 mL), and anhydrous Na2SO4 was added 

to dry the solution. The dichloromethane solution was again concentrated and the 

product was purified by silica gel column chromatography.  

 General Procedure for the Synthesis of 44 and 48: A solution of the diketone 

starting material (2.0 mmol) in CH3CN (10 mL) was treated with SnCl2·2H2O (0.090 g, 

0.200 mmol) and the reaction was stirred at room temperature (23 °C) for about 5 min. 
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Then, H2O2, 50 wt. % in H2O (0.6 mL, 10 mmol) was added and the reaction was 

allowed to stir at room temperature for 24 h. Afterwards, distilled water (30 mL) was 

added and the products were extracted to ethyl acetate (20 x 2 mL). The combined 

ethyl acetate layers were dried with anhydrous MgSO4 and were concentrated. Then, 

the product was purified by silica gel column chromatography with 4:1 

dichloromethane:ethyl acetate. 

 Preparation of 3,6-Dihydroperoxy-3,6-dimethyl-1,2-dioxane (39). A solution of 

I2 (0.102 g, 0.400 mmol, 0.1 equivalents per ketone group) in CH3CN (5 mL) was 

treated with a 50 wt. % aqueous solution of H2O2 (1.4 mL, 24 mmol, 6 equivalents per 

ketone group) while the reaction was stirred at room temperature (23 °C). Afterwards, 

2,5-Hexanedione (0.24 mL, 2.0 mmol) was added and the reaction was stirred at room 

temperature (23 °C) for 24 h. At this point, the reaction mixture was concentrated under 

reduced pressure and was redissolved in dichloromethane (10 mL). Then, it was 

concentrated again and the aqueous layer was separated from the dichloromethane 

layer by decanting it. Afterwards, the aqueous layer was dissolved in methanol (10 mL) 

and was concentrated. Crystallization from the concentrated methanol solution at – 29 

°C afforded 0.225 g (62%) of 39 as thick, colorless, plate-like single crystals: mp 128–

130 °C (lit126b 131 °C); IR (ν, cm–1): 3332 (broad, m), 3300 (broad, m), 3277 (broad, m), 

3246 (broad, m), 2999 (w), 2947 (w), 1439 (m), 1377 (s), 1344 (m), 1272 (m), 1250 (w), 

1157 (m), 1120 (s), 1062 (s), 1022 (w), 960 (w), 924 (w), 893 (w), 862 (s), 761 (w); 1H 

NMR (400 MHz, CD3OD, 23 °C, δ) OOH resonance not observed due to exchange with 

CD3OD, 1.89-1.77 (m, 2H), 1.60-1.47 (m, 2H), 1.38 (s, 6H, CH3); 13C{1H} NMR (101 
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MHz, CD3OD, 23 °C, ppm) 109.29 (hydroperoxy-C), 27.97 (CH2), 19.05 (CH3); Anal. 

Calcd for C6H12O6: C, 40.00; H, 6.71. Found: C, 40.35; H, 6.76. 

 Preparation of 3,5-Dihydroperoxy-3,4,4,5-tetramethyl-1,2-dioxolane (40). 

3,3-Dimethylpentane-2,4-dione was treated with a 50 wt.% aqueous solution of H2O2 

based on the general procedure of 40, 42, and 45–47 on a 4 times larger scale and the 

product was purified by silica gel column chromatography with 9:1 

dichloromethane:ethyl acetate followed by 4:1  dichloromethane:ethyl acetate to obtain 

0.129 g (33%) of 40 as a white solid:  product crystals exploded at 84 °C in the melting 

point apparatus and a melting point could not be obtained;  IR (ν, cm–1): 3414 (broad, m) 

3011 (w), 2956 (w), 2523 (m), 1456 (m), 1396 (m), 1377 (m), 1267 (w), 1221 (w), 1142 

(m), 1098 (s), 1043 (w), 951 (w), 925 (w), 887 (s), 849 (m), 798 (w), 732 (w); 1H NMR 

(400 MHz, CD3OD, 23 °C, δ):  OOH resonance not observed due to exchange with 

CD3OD, 1.45 (s, 6H, CH3), 1.16 (s, 3H, CH3), 1.01 (s, 3H, CH3); 13C{1H} NMR (101 MHz, 

CD3OD, 23 °C, ppm): 113.62 (hydroperoxy-C), 60.69 (C), 24.06 (CH3), 15.99 (CH3), 

15.33 (CH3); Anal. Calcd for C7H14O6: C, 43.30; H, 7.27. Found: C, 42.99; H, 7.10. 

Colorless, polygonal single crystals were grown by slow evaporation from diethyl ether. 

 Preparation of 3,5-Diethyl-3,5-dihydroperoxy-1,2-dioxolane (41). A solution of 

50 wt. % H2O2 in H2O (1.20 mL, 19.2 mmol) and concentrated H2SO4 (0.038 g or 2 

drops, 0.400 mmol) was treated with 3,5-heptanedione (0.41 mL, 3.0 mmol) dropwise at 

0 °C. Afterwards, the reaction was stirred for 1 h at 0 °C. The products were extracted 

with ethyl acetate (5 x 3 mL). Then, the combined ethyl acetate layers were dried to 

obtain a crude white solid that was crystallized by slow evaporation from diethyl ether to 

obtain 0.290 g (50%) of 41 as a colorless, thick, needle-like single crystals: mp 118–120 
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°C; IR (ν cm–1): 3377 (m, broad), 2982 (w), 2947 (w), 2885 (w), 2511 (w), 1462 (m), 

1443 (w), 1425 (w), 1383 (w), 1341 (m), 1321 (m), 1275 (w), 1219 (m), 1159 (s), 1121 

(m), 1084 (m), 1020 (m), 1003 (m), 984 (w), 953 (s), 895 (w), 876 (w), 847 (w), 826 (w), 

787 (s), 736 (w); 1H NMR (400 MHz, CD3OD, 23 °C, δ):  OOH resonance not observed 

due to exchange with CD3OD, 2.49 (s, 2H), 1.96–2.10 (m, 2H), 1.62–1.75 (m, 2H), 0.99 

(t, 6H, J = 7.6 Hz, CH3); 13C NMR (101 MHz, CD3OD, 23 °C, ppm): 115.61 

(hydroperoxy-C), 48.43 (C), 24.92 (CH2), 9.26 (CH3); Anal. Calcd for C7H14O6: C, 43.30; 

H, 7.27. Found: C, 43.40; H, 7.37. 

 Preparation of 3,5-Dihydroperoxy-3,4,5-trimethyl-1,2-dioxolane (42). 3-

Methylpentane-2,4-dione was treated with a 50 wt.% aqueous solution of H2O2 based 

on the general procedure of 40, 42, and 45–47 on a 4 times larger scale and the 

product was purified by silica gel column chromatography with dichloromethane, 9:1 

dichloromethane:ethyl acetate, followed by 4:1  dichloromethane:ethyl acetate to obtain 

0.083 g (23 %) of 42 as a white solid: mp 59–61 °C;  IR (ν cm–1): 3603 (broad, w), 3410 

(broad, m), 3364 (broad, m), 2999 (w), 2945 (w), 1713 (w), 1628 (w), 1464 (m), 1439 

(m), 1377 (s), 1337 (m), 1263 (w), 1229 (w), 1165 (s), 1124 (m), 1086 (s), 1047 (m), 

1009 (m), 947 (w), 874 (s), 802 (m), 754 (w); 1H NMR (400 MHz, CD3OD, 23 °C, δ): 

OOH resonance not observed due to exchange with CD3OD, 2.70 (q, 1H, J = 8.0 Hz, 

CH), 1.50 (s, 3H, CH3), 1.39 (s, 3H, CH3), 1.06 (d, 6H, J = 8.0 Hz, CH3); 13C NMR (101 

MHz, CD3OD, 23 °C, ppm): 114.86 (hydroperoxy-C), 113.00 (hydroperoxy-C), 57.08 

(CH), 16.69 (CH3), 16.14 (CH3), 9.18 (CH3); Anal. Calcd for C6H12O6: C, 40.00; H, 6.71. 

Found: C, 39.68; H, 6.63. Colorless, polygonal single crystals were grown from a 

solution of 2:1 toluene:dichloromethane at –29 °C.  
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 Preparation of 3,5-Dihydroperoxy-3,5-dimethyl-1,2-dioxolane (43). A solution 

of 50 wt. % aqueous solution of H2O2 (0.60 mL, 9.6 mmol) and concentrated H2SO4 

(0.019 g, 0.200 mmol) was cooled to 0 °C. This solution was treated with 2,4-

pentanedione (0.32 mL, 3.0 mmol) dropwise at 0 °C. The mixture was then stirred for 1 

h at 0 °C and was kept in the refrigerator (2–8 °C) for 24 h. Then, the reaction mixture 

was added to a separatory funnel, and was extracted with diethyl ether (3 x 5 mL). The 

combined ether layers were dried under reduced pressure to afford 0.295 g (59%) of 43 

as a white solid. Crystallization of this crude solid from a solution of 20:1 

dichloromethane:ethyl acetate at –29 °C afforded 0.209 g (42%) of 43 as colorless, 

polygonal single crystals: mp 98–100 °C (lit125a 98–100 °C); IR (ν, cm-1): 3362 (m, 

broad), 3003 (w), 2953 (w), 1431 (m), 1379 (m), 1329 (m), 1225 (m), 1167 (s), 1088 

(m), 1028 (w), 953 (w), 920 (w), 889 (w), 849 (m), 820 (w), 789 (m), 750 (w); 1H NMR 

(400 MHz, CD3OD, 23 °C, δ) OOH resonance not observed due to exchange with 

CD3OD, 2.61 (s, 2H, CH3), 1.52 (s, 6H, CH3); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, 

ppm) 113.42 (hydroperoxy-C), 52.69 (CH2), 18.14 (CH3); Anal. Calcd for C5H10O6: C, 

36.15; H, 6.07. Found: C, 36.07; H, 5.98. 

 Preparation of 6-Hydroperoxy-3,6-dimethyl-1,2-dioxan-3-ol (44). Hexane-2,5-

dione was treated with a 50 wt.% aqueous solution of H2O2 based on the general 

procedure of 44 and 48 to obtain 0.048 g (15%) of 44 as a colorless oil: IR (ν cm–1): 

3399 (broad, m), 2992 (w), 2972 (w), 2943 (w), 2870 (w), 1703 (w), 1634 (w), 1449 (m), 

1400 (m), 1377 (m), 1337 (m), 1256 (m), 1231 (m), 1167 (m), 1148 (m), 1115 (s), 1070 

(s), 1024 (w), 964 (m), 943 (m), 881 (w), 849 (s), 766 (w), 743 (w); 1H NMR (400 MHz, 

CD3OD, 23 °C, δ):  OOH and OH resonances not observed due to exchange with 
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CD3OD, 1.80–1.96 (m, 2H), 1.61–1.78 (m, 1H), 1.44–1.60 (m, 1H), 1.40 (s, 3H, CH3), 

1.30 (s, 3H, CH3); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm): 107.21 (hydroperoxy-

C), 100.04 (hydroxy-C), 30.02 (CH2), 26.99 (CH2), 22.52 (CH3), 18.08 (CH3);  Anal. 

Calcd for C6H12O5: C, 43.90; H, 7.37. Found: C, 43.60; H, 7.35. 

 Preparation of 5-Hydroperoxy-3,4,4,5-tetramethyl-1,2-dioxolan-3-ol (45). 3,3-

Dimethylpentane-2,4-dione was treated with a 50 wt.% aqueous solution of H2O2 based 

on the general procedure of 40, 42, and 45–47 on a 4 times larger scale and the 

product was purified by silica gel column chromatography with 9:1 

dichloromethane:ethyl acetate followed by 4:1  dichloromethane:ethyl acetate to obtain 

0.111 g (31%) of 45 as a white solid: mp 79–81 °C; IR (ν cm–1): 3455 (m), 3260 (broad, 

m), 3005 (w), 2943 (w), 2874 (w), 2555 (w), 2419 (w), 1454 (m), 1396 (m), 1375 (m), 

1279 (w), 1253 (w), 1213 (m), 1140 (s), 1115 (s), 1098 (s), 1063 (m), 943 (m), 916 (m), 

880 (s), 851 (m), 810 (w), 791 (w), 734 (w); 1H NMR (400 MHz, CD3OD, 23 °C, δ):  

OOH and OH resonances not observed due to exchange with CD3OD, 1.48 (s, 3H, 

CH3), 1.31 (s, 3H, CH3), 1.11 (s, 3H, CH3), 1.09 (s, 3H, CH3); 13C NMR (101 MHz, 

CD3OD, 23 °C, ppm): 114.86 (hydroperoxy-C), 108.05 (hydroxy-C), 59.73 (C), 23.41 

(CH3), 18.72 (CH3), 16.94 (CH3), 14.41 (CH3); Anal. Calcd for C7H14O5: C, 47.19; H, 

7.92. Found: C, 47.20; H, 7.93. Colorless, polygonal single crystals were grown from a 

solution of 2:1 dichloromethane:methanol at –29 °C. 

 Preparation of 3,5-Diethyl-5-hydroperoxy-1,2-dioxolan-3-ol (46). Heptane-

3,5-dione was treated with a 50 wt.% aqueous solution of H2O2 based on the general 

procedure of 40, 42, and 45–47 on a 4 times larger scale and the product was purified 

by silica gel column chromatography with dichloromethane  followed by 4:1  
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dichloromethane:ethyl acetate to obtain 0.126 g (35 %) of 46 as a white solid: mp 79–81 

°C; IR (ν cm–1): 3410 (broad, m), 3333 (broad, m), 2982 (m), 2947 (w), 2887 (w), 2797 

(w), 2359 (s), 2160 (w), 2023 (w), 1973 (w), 1742 (w), 1690 (m), 1647 (w), 1551 (m), 

1526 (m), 1458 (m), 1406 (m), 1306 (m), 1260 (m), 1213 (w), 1163 (m), 1113 (m), 1072 

(m), 1018 (m), 934 (m), 899 (m), 851 (m), 800 (m), 718 (m); 1H NMR (400 MHz, CD3OD, 

23 °C, δ):  OOH and OH resonances not observed due to exchange with CD3OD, 2.47 

(q, 2H, J = 10.0 Hz, CH2), 2.05–2.17 (s, 1H), 1.66–1.81 (m, 3H), 1.00 (t, 6H, J = 7.6 Hz, 

CH3); 13C NMR (101 MHz, CD3OD, 23 °C, ppm): 115.93 (hydroperoxy-C), 108.57 

(hydroxy-C), 51.79 (CH2), 30.07 (CH2), 25.17 (CH2), 9.40 (CH3), 9.35 (CH3); Anal. Calcd 

for C7H14O5: C, 47.19; H, 7.92. Found: C, 46.98; H, 7.89. Colorless, plate-like single 

crystals were grown by slow evaporation from a solution of 10:1 toluene:diethyl ether.  

 Preparation of 5-Hydroperoxy-3,4,5-trimethyl-1,2-dioxolan-3-ol (47). 3-

Methylpentane-2,4-dione was treated with a 50 wt.% aqueous solution of H2O2 based 

on the general procedure of 40, 42, and 45–47 on a 4 times larger scale and the 

product was purified by silica gel column chromatography with dichloromethane, 9:1 

dichloromethane:ethyl acetate, followed by 4:1 dichloromethane:ethyl acetate to obtain 

0.140 g (43 %) of 47 as a white solid: mp 71–73 °C;  IR (ν cm–1): 3445 (broad, m), 3296 

(broad, m), 2995 (w), 2947 (w), 2888(w), 1649 (w), 1622 (w), 1558 (m), 1510 (w), 1467 

(m), 1383 (s), 1342 (w), 1290 (w), 1263 (w), 1209 (m), 1171 (s), 1124 (s), 1084 (s), 

1011 (m), 949 (s), 854 (s), 797 (m), 758 (m); 1H NMR (400 MHz, CD3OD, 23 °C, δ): 

OOH and OH resonances not observed due to exchange with CD3OD, 2.48 (q, 1H, J = 

7.6 Hz, CH), 1.42 (s, 3H, CH3), 1.41 (s, 3H, CH3), 1.06 (d, 6H, J = 7.2 Hz, CH3); 13C 

NMR (101 MHz, CD3OD, 23 °C, ppm): 115.18 (hydroperoxy-C), 107.01 (hydroxy-C), 
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57.02 (CH), 21.63 (CH3), 16.09 (CH3), 10.24 (CH3); Anal. Calcd for C6H12O5: C, 43.90; 

H, 7.37. Found: C, 43.71; H, 7.45. Colorless, hexagonal single crystals were grown from 

a solution of 5:1 toluene:diethyl ether at –29 °C. 

 Preparation of 5-Hydroperoxy-3,5-dimethyl-1,2-dioxolan-3-ol (48). Pentane-

2,4-dione was treated with a 50 wt.% aqueous solution of H2O2 based on the general 

procedure of 44 and 48 to obtain 0.137 g (46%) of 48 as a white solid: mp 110–112 °C 

(lit126a 110–112 °C); IR (ν cm–1): 3439 (broad, m), 3260 (broad, m), 3005 (w), 2956 (w), 

2835 (s), 1439 (m), 1381 (m), 1331 (m), 1308 (m), 1217 (m), 1173 (s), 1078 (m), 

1057(m), 959 (m), 918 (w), 883 (w), 845 (s), 808 (s), 799 (s); 1H NMR (400 MHz, 

CD3OD, 23 °C, δ):  OOH and OH resonances not observed due to exchange with 

CD3OD, 2.58 (s, 2H, CH2), 1.58 (s, 3H, CH3), 1.47 (s, 3H, CH3); 13C NMR (101 MHz, 

CD3OD, 23 °C, ppm): 113.69 (hydroperoxy-C), 106.53 (hydroxy-C), 56.11 (CH2), 22.80 

(CH3), 18.54 (CH3);  Anal. Calcd for C5H10O5: C, 40.00; H, 6.71. Found: C, 40.35; H, 

6.66. Colorless, polygonal single crystals were grown by slow evaporation from diethyl 

ether. 
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CHAPTER 6 

Synthesis, Characterization, and Study of Highly Energetic Peroxy Acids with 

Surprisingly Low Impact and Friction Sensitivities 

6.1 Introduction 

6.1.1 Peroxy Acids 

 Peroxy acids have the basic RC(O)OOH formula, where the R group can be an 

alkyl or aryl group. They form dimers in the solid state due to hydrogen bonding 

according to X-ray crystal structures, but are monomeric in solution and liquid state.128 

Increases in the effective molecular volumes from the carboxylic acids to peroxy acids 

(12–18 Å3) lead to less efficient crystal packing and to lower melting temperatures than 

the corresponding carboxylic acids.128 The pKa values of peroxy acids are higher than 

the corresponding carboxylic acids and they are weaker acids due to the absence of 

resonance stabilization of the anion.39 The average O–O bond dissociation energy 

reported for some simple peroxy acids is 48 kcal/mol.40 

 There are different methods to synthesize peroxy acids, but the most popular 

method is the acid catalyzed reaction of the parent carboxylic acid with hydrogen 

peroxide.129 Instead of the parent carboxylic acid, acid chlorides or anhydrides can be 

reacted with hydrogen peroxide at low temperatures.130 Peroxy acids are very powerful 

oxidizing organic peroxides and are used for oxidation reactions such as the 

epoxidation of olefins and Baeyer-Villiger oxidation of ketones in both academia and in 

industry.128,131,132 Peroxy acids or peroxy acid precursors are also used as bleaching 

agents, disinfectants, and fungicides.128 
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 Organic peroxy acids are not stable for long at room temperature in solution and 

tend to lose the active oxygen, decomposing into carboxylic acid and hydrogen peroxide 

starting materials.39 This decomposition is accelerated by metals, metal ions, metal 

complexes, acids, and bases. As the molecular weight of the peroxy acid is increased 

the stability increases.39 Pure peroxyformic acid and peroxyacetic acid are known to be 

explosive at higher temperatures.130 

6.1.2 Use of Peroxy Acids as HEDMs 

 TATP, DADP, HMTD, and MEKP are the only well-studied peroxo-based 

compounds for which the energetic materials properties have been determined.2,35 

However, the extremely high sensitivities of these peroxo-based explosives render them 

unsafe to handle.2,6b,35,64 Furthermore, low thermal stabilities (Tables 3–6), high 

volatilities (TATP and DADP),2,35,64 and lower detonation velocities (Tables 3–6) with 

respect to the high nitrogen explosives such as RDX and HMX (Table 2) are highly 

disadvantageous for HEDM applications.1e,6b,35 Thus, peroxo-based explosives TATP, 

DADP, HMTD, and MEKP have not found any civilian or military HEDM applications. 

 Peroxo-based compounds can serve as useful HEDMs if their high impact and 

friction sensitivities can be reduced to optimum levels for their applications and for safe 

handling. Attempts were made to reduce the high sensitivities of the known peroxo-

based compounds using different strategies such as the use of desensitizing (water or 

WD-40 oil) or phlegmatizing (paraffin wax) agents without much success.122 Recently, 

Landenberger has shown that cocrystals of DADP and TITNB have a reduced impact 

sensitivity compared to both the pure forms of DADP and TITNB due to the I···O close 

contacts in the DADP/TITNB cocrystals.68b Peroxy acids are generally not known to be 
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shock sensitive. Hence, they could be useful peroxo-based candidates for HEDM 

applications. Pure low molecular weight peroxy acids were reported to be explosive at 

elevated temperatures.39,130 However, the energetic materials properties of these 

oxygen-rich peroxy acids have not been studied up to date. 

 In this Chapter, we report the synthesis, structure, and energetic materials 

properties of four oxygen-rich aromatic peroxy acids 49–52 (Figure 65). Compounds 

49–52 were synthesized in high yields with minimal synthetic manipulations. They are 

oxygen rich, and contain O:C ratios in the range of 0.71–1.00. Interestingly, the peroxy 

acids 49, 51, and 52 have higher thermal stabilities when compared to other peroxo-

based subclasses, low impact and friction sensitivities, and highly impressive detonation 

velocities. These properties render the peroxy acids 49, 51, and 52 appropriate for 

applications as secondary HEDMs. These peroxy acids 49, 51, and 52 are among the 

first peroxo-based oxygen-rich compounds that can be classified as secondary HEDMs. 

Through this research, we have demonstrated that the peroxo-based compounds can 

have impressive properties to be developed as HEDMs. 

 

 

 

Figure 65. Aromatic peroxy acids 49–52. 
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6.2 Results and Discussion 

 A series of aromatic peroxy acids was chosen in this study since the π-

interactions in their crystal structures may be useful to obtain low sensitivities and high 

crystalline densities. Compounds 49 and 50 contain only the peroxy acid functional 

groups while 51 and 52 contain peroxy acid and nitro functional groups. Nitro groups 

have been commonly used in energetic materials to increase the oxygen and nitrogen 

contents without excessively increasing the impact and friction sensitivities.2 

Compounds 49 and 50 are the corresponding peroxy acids of the tert-butyl peroxy 

esters 16 and 17 of Chapter 3, respectively. The highest O:C ratio that was safely 

obtained with peroxy acids 49–52 was 1.00. 

6.2.1 Synthetic Aspects 

Caution: High concentrations of aqueous H2O2 (84 wt.%) and oxygen-rich 

organic peroxy acids in this study are potentially explosive. These hazardous materials 

require handling with extreme care. Hence, reactions and other manipulations were 

performed in a fume hood behind a blast shield. Personal protective equipment was 

used whenever necessary: a face shield, leather gloves, and a leather apron. 

Interactions with strong acids, metals, metal salts, or easily oxidizable species were 

avoided to prevent hazardous decomposition reactions. All reactions were performed on 

small scales (≤ 350 mg) and the temperatures were not increased above 50 °C.  

The peroxy acids 49–52 were prepared in high yields (≥ 94%) as shown in Figure 

65. The synthesis of 49–52 was carried out according to Scheme 8. Compounds 51 and 

52 were synthesized based on the published procedures for 51133 and 52,134 

respectively. Compound 50 is a new peroxy acid obtained in this study. 
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Scheme 9. Synthesis of peroxy acids. 

 Peroxy acids 49 and 50 were prepared by treatment of the corresponding acid 

chlorides with 84 wt.% H2O2 in the presence of methanesulfonic acid at 50 °C. The 

syntheses of 49 and 50 using the corresponding carboxylic acids under similar 

conditions only led to low yields of peroxy acids. However, 51 and 52 were prepared in 

high yields by treatment of the corresponding carboxylic acids with 84 wt.% H2O2 in the 

presence of methanesulfonic acid at 35 and 50 °C, respectively.133,134 Compounds 49–

52 were easily precipitated from the reaction solutions by cooling to 0 °C and the pure 

products were isolated by filtration, washing, and drying under reduced pressure. 

 Ease of the syntheses and minimal synthetic manipulations required in the 

preparation of 49–52 are great advantages in the design of HEDMs. The major 

byproducts in these reactions were the parent carboxylic acids, which cannot be easily 

separated from the peroxy acids. Hence, high concentrations of H2O2 and elevated 

temperatures were required to ensure high yields of product peroxy acids. The addition 

of 84 wt.% H2O2 also needed to be carried out slowly, along the walls of the reaction 

flasks, to avoid any violent reactions.  
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 Attempts to prepare peroxy acids from the corresponding acid chlorides of 

1,2,4,5-benzene tetracarboxylic acid and mellitic acid only resulted in violent reactions 

with the elimination of smoke upon the addition of 84 wt.% H2O2. Thus, the 

corresponding peroxy acids of the tert-butyl peroxy esters 18 and 19 of Chapter 3 were 

not obtained. Since the O:C ratio of 1.00 was reached with only three peroxy acid 

functional groups, substitution of the aromatic rings with more peroxy acid groups might 

not be safely achievable.  

 Peroxy acids 49 and 50 were isolated as white solids, while 51 and 52 were 

isolated as pale yellow solids. It was a challenging process to obtain single crystals of 

peroxy acids since they tend to decompose in to the parent carboxylic acids in solution. 

However, X-ray quality single crystals of 49·DMF and 52 were grown by cooling the 

saturated solutions of DMF and 1:1 diethyl ether:pentane at –29 °C, respectively. Both 

single crystals of 49·DMF and 52 were colorless. They were in the form of thin needles. 

The X-ray crystal structure of 51 was reported in the literature.135 Compound 50 was 

highly unstable in solution and thus, single crystals of 50 were not obtained. Peroxy 

acids 49–52 were characterized by 1H and 13C NMR spectroscopy, melting point 

analysis, IR spectroscopy, and elemental analysis. X-ray crystal structures were 

obtained for complete characterization of 49·DMF and 52.  

6.2.2 Spectroscopy 

 1H NMR chemical shifts of the parent carboxylic acid and the product peroxy acid 

varied only slightly in CD3OD. However, in (CD3)2NCOD, the OOH chemical shift of 49 

was shifted downfield to δ 14.18 from δ 13.56 of terephthalic acid. 13C NMR 

spectroscopy was also useful in the identification of the presence of peroxy acids, since 
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the carbonyl carbon chemical shift was changed in going from the parent carboxylic acid 

to the product peroxy acid. The chemical shifts of the carbonyl carbons of peroxy acids 

were shifted upfield by 1–3 ppm with respect to the corresponding carboxylic acids.  

 IR spectroscopy has mainly assisted in differentiating between the parent 

carboxylic acid and the product peroxy acid. The carbonyl stretching frequency of the 

peroxy acids were shifted towards higher frequencies with respect to the corresponding 

carboxylic acids by 20–40 cm–1. These carbonyl stretching frequencies were in the 

range of 1715–1744 cm–1. Also, the O–H stretching frequencies of peroxy acids were 

shifted towards higher frequencies by about 200–300 cm–1. They were medium and 

broad peaks in the range of 3226–3447 cm–1. These higher O–H stretching frequencies 

of peroxy acids might be due to lesser participation in hydrogen bonding with respect to 

the parent carboxylic acids. In the IR spectra of 49–52, medium and/or strong peaks 

were present in the region of 1000–1300 cm–1 for C–O stretching modes. There were 

also medium to weak O–O stretching modes in the range of 800–1000 cm–1. 

6.2.3 X-ray Crystal Structures 

X-ray crystal structures of 49·DMF and 52 were obtained. There were no unusual 

interactions in the X-ray crystal structures. Experimental crystallographic data of the X-

ray crystal structures of 49·DMF and 52 are summarized in Table 45. Perspective views 

of the crystal structures of 49·DMF and 52 are given in the Figures 66 and 67. Selected 

bond lengths and angles from the crystal structures are provided in Table 46. The list of 

hydrogen bonds and short contacts of 52 prepared by Mercury 3.5.1 software is 

provided in Table 47. 
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Table 45. Experimental crystallographic data of 49·DMF and 52. 

 49·DMF 52 

Formula C6H10N2O4 C14H9N4O14 

FW 174.16 457.25 

Space group P 1bar P 21 21 21 

a (Å) 5.8492(6) 6.4707(7) 

b (Å) 7.6189(8) 10.8839(10) 

c (Å) 9.8922(11) 24.673(2) 

V (Å3) 406.59(8) 1737.6(3) 

Z 2 4 

T (K) 100(2) 100(2) 

λ (Å) 0.71073 0.71073 

ρcalc (g/cm3) 1.423 1.748 

μ (mm–1) 0.120 0.161 

R(F)a (%) 3.78 3.62 

Rw(F)b (%) 12.08 9.74 

         aR(F) = ∑║Fo│–│Fc║ ⁄ ∑│Fo│; bRw(F) = [∑w(Fo2 - Fc2)2/∑w(Fo2)2]1/2 
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Figure 66. Perspective view of 49·DMF with thermal ellipsoids at the 50% probability 
level. 
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Figure 67. Perspective view of 52 with thermal ellipsoids at the 50% probability level. 
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Table 46. The selected bond lengths (Å) and angles (°) of 49·DMF and 52. 

Bond/Angle 49·DMF 52 

O–O 1.4559(5) 1.447(3) 

C=O 1.2065(6) 1.196(4) 

N–O  1.229(4) 

  1.215(4) 

  1.231(4) 

  1.217(3) 

Cring–C(O)OOH 1.4957(6) 1.492(4) 

N–C  1.473(4) 

  1.470(4) 

Angles:   

O=C–O 124.76(4) 125.7(3) 

C–O–O 110.97(4) 111.5(2) 

O–N–Cring  117.4(3) 

  117.9(3) 

  118.9(3) 

  117.5(3) 

 
O–N–O 

 124.7(3) 

  123.6(3) 
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Table 47. The list of hydrogen bonds and short contacts of 52. 

Compound Number Atom 1 Atom 2 Length (Å) Length-VdW  (Å) 

52 1 O6 N1 3.001 –0.069 

 2 N2 O3 3.054 –0.016 

 3 O5 C7 3.055 –0.165 

 4 O5 H5 2.712 –0.008 

 5 O5 O1 2.887 –0.153 

 6 H3 O1 2.343 –0.377 

 7 O7 H7 2.435 –0.285 

 8 N1 O8 2.993 –0.077 

 9 H5 O11 2.431 –0.289 

 10 O1 O10 3.017 –0.023 

 11 O1 O11 2.749 –0.291 

 12 H1 O10 2.365 –0.355 

 13 H1 O11 1.884 –0.836 

 14 H1 C11 2.747 –0.153 

 15 O2 O10 3.021 –0.019 

 16 O7 C12 3.048 –0.172 

 17 O4 O9 3.029 –0.011 

 18 O4 O10 2.67 –0.37 

 19 O4 H6 1.74 –0.98 

 20 C1 H6 2.758 –0.142 

 21 O2 H6 2.45 –0.27 

 22 C5 O13 3.142 –0.078 

 23 O3 N4 3.053 –0.017 

 24 O4 H8 2.534 –0.186 

 25 N4 O8 3.006 –0.064 

 26 C13 O8 3.215 –0.005 

 27 O12 N3 3.032 –0.038 

 28 O11 O14 2.978 –0.062 

 29 C11 O14 3.043 –0.177 
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The O–O bond lengths of the peroxy acids 49·DMF and 52 (Tables 24 and 25) 

are in the range of the O–O bond lengths reported for peroxy acids.99 The crystalline 

densities of 49·DMF, 51,135 and 52 are in the range of 1.423–1.748 g/cm3. Compound 

52 provided the highest crystalline density (1.748 g/cm3) of all peroxo-based 

compounds in our study.  

 The X-ray crystal structure of 49·DMF contains hydrogen bonds and many short 

contacts between molecules of 49 and DMF. These molecules of 49 and DMF are 

packed in wave-like layers assisted by intermolecular O–H···O hydrogen bonds (Figure 

68). These are relatively strong O–H···O hydrogen bonds with distances of 2.580 Å. 

Based on the packing structure, there should be C–H···π interactions between methyl 

groups of DMF and the aromatic rings. These molecular layers interact via weak C–

H···O hydrogen bonds, where H···O distances are in the range of 2.465–2.689 Å with 

short contacts such as C···O (2.978 Å) and C···H (2.614 Å). However, since 49 cannot 

be crystallized without DMF, it is hard to assess how the solid state interactions of 

solvent free 49 would influence the impact and friction sensitivities.  

 Compound 52 was obtained as solvent free crystals and the solid state structural 

features can be related to the impact and friction sensitivities. The X-ray crystal 

structure of 52 contains edge-to-face π-interactions (Figure 69). An oxygen atom of a 

nitro group from one molecule of 52 interacts with the aromatic ring of another molecule 

of 52. This Cπ···O short contact distance is 3.048 Å. There is a large number of 

stabilizing intermolecular interactions that involves the weak O–O bonds (Figure 70) as 

well as the oxygen atom of the carbonyl groups. These interactions can hold the oxygen 

atoms in place and stabilize the O–O trigger bonds in the crystalline lattice of 52.  
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Figure 68. Wave-like layers of 49·DMF assisted by intermolecular O–H···O hydrogen 

bonds (blue and red) between 49 and DMF. 
 

Mercury 3.5.1 

Mercury 3.5.1 
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Figure 69. Edge-to-face π-interaction of 52. 

 

 
Grey, purple, white, and red asterisks indicate C, N, H, and O atoms, respectively 

Figure 70. Stabilizing intermolecular interactions of 52. 

Mercury 3.5.1 

Mercury 3.5.1 
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 There are no molecular layers in the crystal structure of 52. The aromatic rings 

are oriented in multiple directions (Figure 71) and a large number of hydrogen bonds 

and short contacts are present between these molecules. Thus, there are no slip planes 

that can move with respect to each other to reduce the impact and friction sensitivities.  

 In the crystal structure of 52, there are moderate intermolecular O–H···O 

hydrogen bonds (2.670–2.749 Å) between the oxygen atom of the carbonyl groups and 

the –OOH groups. Many weak C–H···O hydrogen bonds are present where the H···O 

distances are in the range of 2.343–2.712 Å. There are six different types of O···O short 

contacts with distances in the range of 2.821–3.029 Å, which are less than the sum of 

the van der Waals radii for an O···O (3.04 Å) interaction (Table 47).120 Interestingly, 52 

contains the highest number of the stabilizing O···O short contacts from the peroxo-

based crystal structures obtained. Both of the oxygen atoms of the O–O bonds form two 

O···O short contacts, and altogether there are four O···O short contacts for each O–O 

trigger bond. Each attractive O···O short contact can exert a stabilization energy of 3–13 

kJ/mol.81,83a,84a The stabilizing effects of these interactions are cumulative in the solid 

state, and thus, these O···O short contacts, which cradle the O–O bonds, might assist in 

stabilizing the crystalline lattice as well as the weak O–O bonds of 52.  

 The other two major types of short contacts of 52 are N···O and C···O 

interactions. The N···O interaction distances are in the range of 2.993–3.054 Å while the 

C···O interaction distances are in the range of 3.048–3.215 Å. These N···O and C···O 

short contacts are less than the sum of the van der Waals radii for N···O (3.07 Å) and 

C···O (3.22 Å) interactions, respectively.120 There are also some C···H (2.747 and 2.758 

Å) and O···H (2.365 and 2.450 Å) short contacts in the crystal structure of 52.  
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Figure 71. Crystal packing of molecules in the X-ray crystal structure of 52 without 

hydrogen bonds or short contacts. 

Mercury 3.5.1 

Mercury 3.5.1 



www.manaraa.com

218 
 

 

 The high crystalline density of 52 (1.748 g/cm3 at 100 K) is useful in order to 

obtain a high detonation velocity. This crystalline density of 52 is higher than those of 

orthorhombic (1.704 g/cm3 at 123 K) and monoclinic (1.713 g/cm3 at 100 K) TNT.119 The 

molecular weights of 52 and TNT (228.11 and 227.14 g/cm3) are similar, and as a result 

the molecules of 52 pack more efficiently than TNT in the solid state.  

  Since the expected crystalline density goal for HEDMs is ≥ 1.8 g/cm3, peroxo-

based compounds with higher crystalline densities need to be obtained for higher 

detonation veloctities.2 The secondary HEDMs with nitro groups have higher crystalline 

densities and hence, higher detonation velocities.2,6b By the addition of another nitro 

group onto 52, the peroxy acid with the highest crystalline density (1.748 g/cm3 at 100 

K) in our study, we can obtain 2,4,6-trinitrobenzoperoxoic acid (53) shown in Figure 72. 

 

 

 
Figure 72. 2,4,6-Trinitrobenzoperoxoic acid (53). 

 

Unfortunately, the synthesis of 53 requires the known explosive TNT as the 

starting material, and the use of known explosives in academic laboratories is restricted. 

Thus, we have not attempted the synthesis of 53. The crystalline density of 53 at 298 K 

was estimated to be 1.80 g/cm3 by our collaborators from the Klapötke lab for the 
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energetic calculations. Since the crystalline density goal of ≥ 1.8 g/cm3 can be 

approached with 53, its energetic properties are of high interest. 

6.2.4 Thermal Stability 

 Thermal stabilities of peroxy acids 49–52 were assessed using thermogravimetry 

(TGA/DTA). Their decomposition temperatures (TDec) were obtained from the 

thermograms. The decomposition temperature of 53 was estimated based on the 

functional groups present.136 CBS-4M electronic enthalpies of 49–53 were calculated 

using the Gaussian09 software package to obtain heats of formation values (ΔfH°) by 

our collaborators from the Klapötke lab.113 The TDec and ΔfH° values of 49–53 are 

provided in Table 48.  

Table 48. Decomposition temperatures and heats of formation values of 49–53. 

Compound TDec (°C) ΔfH° (kJ/mol) 

49 160 –584.1 

50 167 –846.6 

51 141 –324.3 

52 132 –310.3 

53 140a –275.5 

aEstimated decomposition temperature based on the functional groups present.136 

 The peroxy acids 49–53 are all fairly thermally stable. They have decomposition 

onsets ranging from 132–160 °C (Table 48). Their TDec values are relatively higher with 

respect to the other subclasses of organic peroxides. HEDM applications require TDec 

values ≥ 150 °C.2,15 Compounds 49 and 50 have higher TDec values than 150 °C. 

However, the TDec values of peroxy acids 51–53 are also close to 150 °C for potential 

HEDM applications. 
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 The ΔfH° values of 49–53 are all negative, which indicates they are stable 

compounds that release energy upon formation. The nitro substituted peroxy acids have 

more positive ΔfH° values in the range of –324.3 to –275.5 kJ/mol. These are the 

highest ΔfH° values that were obtained for the peroxo-based compounds in our study. 

The higest ΔfH° value was obtained for compound 53, with the highest crystalline 

density and the highest oxygen and nitrogen content. 

6.2.5 Preliminery Sensitivity Tests 

 The sensitivities of the peroxy acids 49–52 were studied using the flame, 

hammer impact, sand paper friction, and electrostatic discharge (Tesla coil) tests. 

Based on the flame and the Tesla coil tests, 50 appeared as a highly sensitive and 

energetic compound. It produced a sudden, large, and bright flame with a loud sound in 

the flame test and a sudden, large, and bright flame in the Tesla coil test. Compounds 

49, 51, and 52 produced sensitive and energetic responses as well. However, the flame 

and Tesla coil test responses of 49, 51, and 52 were not as rapid as 50. This indicates 

that 49, 51, and 52 are not highly sensitive, but are still energetic to produce positive 

responses.  

 Preliminary sensitivity test responses were also useful to confirm the formation of 

the peroxy acids by comparing with the corresponding carboxylic acids. The flame and 

Tesla coil test responses of the corresponding acids were significantly different from the 

peroxy acids. The acids only burned slowly in the flame tests and produced no 

responses in the Tesla coil tests. No sensitive responses were observed for the peroxy 

acids 49–52 in the hammer impact and sand paper friction tests. 
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6.2.6 Standard Sensitivity Tests 

 Impact, friction, and electrostatic discharge sensitivities of the peroxy acids 49–

52 were determined with a BAM drop hammer, BAM friction tester, and an electrostatic 

spark sensitivity tester using standard experimental methods by our collaborators from 

Klapötke lab.29–34 Table 49 includes the impact, friction, and electrostatic discharge 

sensitivities of 49–52.  

Table 49. Impact, friction, and electrostatic discharge sensitivities of 49–52. 

Compound IS (J) FS (N) ESDS (J) 

49 10 288 0.1 

50 1 5 0.025 

51 9 360 0.1 

52 9 360 0.1 

 

 Based on the “UN Recommendations on the Transport of Dangerous Goods”,28 

the peroxy acids 49, 51, and 52 are between “less sensitive” and “sensitive” while 50 is 

“very sensitive” towards impact. Compound 49 is “sensitive”, 50 is “extremely sensitive”, 

and 51 and 52 are “less sensitive” towards friction. The electrostatic discharge 

sensitivity value of 50 is only 0.025 J. This value is similar to the electrical discharges 

that can be generated by the human body (≤ 0.02 J).2 Thus, 50 should only be handled 

with extreme care. The electrostatic discharge sensitivity values of 49, 51, and 52 are 

well above 0.02 J, and can be safely handled.  

 The sensitivities of the peroxy acids 49, 51, and 52 are much less than the 

known peroxo-based explosives TATP, DADP, HMTD, and MEKP. These sensitivities 

of 49, 51, and 52 are similar to the secondary explosive TNT (Table 2). Compounds 49, 
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51, and 52 display the lowest sensitivity responses reported for the oxygen-rich peroxo-

based compounds. When only peroxy acid groups were employed to increase the 

oxygen content and the energetic performance, the highly sensitive peroxy acid 50 was 

obtained. The attempts to increase the oxygen content further were also unsuccessful. 

However, when the oxygen and nitrogen contents were increased with nitro groups to 

increase the energetic performance, the sensitivities were not increased excessively. 

Compound 50 can be categorized as a primary explosive while 49, 51, and 52 can be 

categorized as secondary explosives. Peroxy acids 49, 51, and 52 are the first peroxo-

based oxygen-rich compounds that are useful as secondary HEDMs.  

 Compound 51 contains a layered structure, packed in a wave-like orientation, 

with intralayer hydrogen bonding and only weak van der Waals forces in between the 

layers.135 Thus, the solid state structure of 51 allows for some dissipation of energy 

upon initiation by movement of these layers with respect to each other.84 However, the 

relative movement of the layers of 51 is restricted in certain directions since these layers 

are in a wave-like orientation.84 The most insensitive crystals contain face-to-face 

stacked layers where sliding is unrestricted in all directions of the sliding plane.84 

Additionally, the short contacts and hydrogen bonds of 51135 may assist in stabilizing the 

O–O bonds in the crystalline lattice.  

 The X-ray crystal structure of 52 lacks face-to-face π-interactions, and has a 

layered structure assisted by intralayer hydrogen bonding with only weak van der Waals 

interactions in between the layers. Thus, slip planes are not present similar to the low 

sensitivity HEDMs.84 According to the analysis of intermolecular short contacts, we 

discovered that 52 contains O–H···O and C–H···O hydrogen bonds and a large number 
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of O···O, N···O, and C···O short contacts. There are four stabilizing O···O short 

contacts and an O–H···O hydrogen bond that involve each O–O trigger bond. There are 

many N···O and C···O short contacts that can also stabilize the crystalline lattice of 52. 

This network of weak interactions might facilitate energy dissipation in the crystalline 

lattice by disintegrating and reforming. The highly sensitive peroxo-based compounds 

TATP and DADP lack these strong O–H···O hydrogen bonds and stabilizing O···O, 

N···O, and C···O short contacts. Thus, the low sensitivity of 52 can be attributed to the 

stabilization of the O–O trigger bonds in the crystalline lattice by O–H···O hydrogen 

bonds and O···O short contacts as well as gaining an alternative means to dissipate 

energy without breaking covalent bonds with the weakly interacting network of O···O, 

N···O, and C···O short contacts. Still, more studies need to be carried out to understand 

the influence of these solid state interactions on the physical properties of materials 

more completely. 

6.2.7 Energetic Performance Calculations 

 The energetic properties of the peroxy acids 49–53 were calculated using the 

EXPLO5 V6.02 software (Table 50) by our collaborators from the Klapötke lab.114 The 

calculated VDet and PDet values of 49–53 are in the range of 5262–7885 m/s and 88–269 

kbar, respectively. They are high detonation velocities, which are highly useful for 

HEDM applications.  
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Table 50. Calculated energetic properties of 49–53. 

Property 49 50 51 52 53 

Formula C8H6O6 C9H6O9 C7H5NO5 C7H4N2O7 C7H3N3O9 

FW (g/mol) 198.14 258.15 183.12 228.11 271.11 

Ωa (%) –105.0 –74.38 –100.5 –63.13 –38.08 

ρb (g/cm3) 1.423 - 1.586135 1.748 - 

ρc (g/cm3) 1.397 1.4d 1.557 1.716 1.8d 

      

EXPLO5 V6.02      

ΔExU° (kJ/kg) –3373 –3590 –3934 –4660 –5243 

PDet (kbar) 88 105 133 213 269 

VDet (m/s) 5262 5588 6176 7217 7885 

Vo (L/kg) 598 628 593 596 619 

aOxygen balance for oxidation of carbon to CO2  
bCrystalline density at 100 K 
cCrystalline densities at 298 K (for energetic calculations) 

( )[ ]TTK −+= 2981298 ναρρ  (T = 100 K, ρT = Desnsity at 100 K, αν = 1.5 x 10–4 K–1) 
dEstimated crystalline densities at 298 K (for energetic calculations) 

 
 The detonation velocities of peroxy acids 49–53 increase with the increasing 

crystalline densities. Since the higher crystalline densities were obtained with the nitro 

aromatic compounds 51–53, the higher detonation velocities were obtained for 51–53. 

The synthesized peroxy acid with the highest crystalline density, 52, has the highest 

detonation velocity (7217 m/s) reported for peroxo-based compounds. This detonation 

velocity of 52 is greater than the detonation velocity (6900 m/s) of the common 

secondary explosive TNT. Compound 53 has the highest detonation velocity (7885 m/s) 
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of our whole study of the peroxo-based compounds. This detonation velocity of 53 is 

much higher than TNT and is even approaching the detonation velocity of the 

secondary high explosive RDX (8750 m/s). The oxygen balance of 53 (–38.08%) is also 

close to RDX (–21%). Since the impact and friction sensitivities of the peroxy acids 49, 

51, and 52 are low, they are good candidates for secondary HEDMs with their 

impressive detonation velocities. Although impact and friction sensitivities of 53 were 

not measured, they should be sufficiently low for use as secondary HEDMs based on 

the organic framework that is similar to the low sensitivity explosive TNT. Thus, 53 could 

be an excellent candidate for secondary HEDMs with the highly impressive detonation 

velocity. 

6.3 Conclusions 

 We have synthesized and characterized oxygen-rich peroxy acids 49–52 for 

potential use as HEDMs. The energetic properties of 53 were calculated since it could 

be a highly impressive candidate for HEDM applications. However, it cannot be 

synthesized in our laboratory, since the known high explosive TNT is required as a 

starting material. 

 The peroxy acids 49, 51, and 52 have surprisingly low impact and friction 

sensitivities and high detonation velocities, compared to the other peroxo-based 

subclasses studied and the known peroxo-based explosives TATP, DADP, HMTD, and 

MEKP. We propose that the stabilization of the O–O trigger bonds in the crystalline 

lattice through O–H···O and C–H···O hydrogen bonds and O···O, N···O, and C···O 

short contacts are the cause for the surprisingly low impact and friction sensitivities of 

52. The detonation velocity of 52 (7217 m/s) is the highest reported detonation velocity 
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for peroxo-based compounds. We can approach the detonation velocity of the 

secondary high explosive RDX (8750 m/s)6b with 53 (7885 m/s). The low sensitivities 

and high detonation velocities of peroxy acids 49, 51, and 52 are appropriate for 

applications as secondary HEDMs. The peroxy acids 49, 51, and 52 are the first 

peroxo-based oxygen-rich compounds that are useful as secondary HEDMs. Through 

this work, we have obtained peroxy acids with high detonation velocities and 

surprisingly low sensitivities for potential use as HEDMs.  

 Major issues with the known peroxo-based explosives are their high volatilities 

(TATP and DADP) and low thermal stabilities (HMTD), which are disadvantageous for 

HEDM applications. Compound 52 was reported as a storable reagent that could be 

useful for epoxidation and Baeyer-Villiger oxidation reactions.133 It has been stored for 

periods up to 1 year in a freezer (< –10 °C) without an observable loss of activity. Thus, 

peroxy acids might be stored for long periods without a loss in their energetic 

performances in HEDM applications. Based on the thermogravimetric data, peroxy 

acids were also more thermally stable than the other subclasses.  

 Additionally, we have obtained the peroxy acids in high yields without much 

synthetic manipulations. All of these properties combined together render peroxy acids 

a highly suitable subclass of peroxo-based compounds that could be developed as 

HEDMs. This work also suggests that the peroxy acid functional group can be 

effectively used to increase the oxygen contents and thus, the energetic properties 

without excessively increasing the impact and friction sensitivities. 
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6.4 Experimental Section 

 General Considerations: Chemicals were purchased from Sigma-Aldrich, Acros 

Organics, or Alfa Aesar and were used without further purification. ACS grade solvents 

were obtained from EMD and Fisher Scientific. Syntheses of 51 and 52 were carried out 

using slightly modified published procedures.133,134 Hydrogen peroxide solution (50 wt.% 

in H2O) was evacuated on the Schlenk line (4–5 h per 5.0 mL) to obtain a concentrated 

hydrogen peroxide solution (84 wt.% in H2O) for the syntheses of 49–52. The final 

concentration of the hydrogen peroxide solution was analyzed by titrating with a solution 

of 0.176 M KMnO4 under acidic conditions (H2SO4). 

 1H and 13C{1H} NMR spectra were obtained from the Varian Mercury 400 (400 

MHz and 101 MHz) NMR spectrometer or  MR 400 (400 MHz and 101 MHz) NMR 

spectrometer, in CDCl3, CD3OD, or (CD3)2NCOD as indicated and were referenced to 

the residual proton and carbon resonances of the solvents (CDCl3, 1H NMR δ 7.27; 13C 

NMR 77.23 ppm. CD3OD, 1H NMR δ 3.31; 13C NMR 49.00 ppm. (CD3)2NCOD, 1H NMR 

δ 2.74; 13C NMR 162.70 ppm). Infrared spectra were obtained with a Shimadzu MIRacle 

10 IRAffinity-1 equipped with a single reflection ATR accessory. Melting points were 

determined on an Electrothermal IA 9300 melting point apparatus and are uncorrected. 

Thermogravimetric (TGA/DTA) measurements to determine the decomposition 

temperatures of compounds 49–52 were performed at a heating rate of 5 °C min−1 with 

an OZM Research DTA 552-Ex instrument. 

 Qualitative Sensitivity Tests: Qualitative sensitivities to heat, impact, and 

electrostatic discharge were determined to assess initial safety issues. Tests included 

burning about 3–5 mg of the compound in the Bunsen burner flame, striking 3–5 mg of 



www.manaraa.com

228 
 

 

the compound on a metal plate with a hammer, and passing an electrostatic discharge 

through 3–5 mg of the compound on a metal plate using an Electro Technic BD 10 

Tesla coil (120 V, 0.35 A). 

 Quantitative Sensitivity Tests: Quantitative sensitivity Tests include BAM 

drop hammer31 impact tests carried out according to STANAG 448929 modified 

instructions30 using approximately 0.4 mL of the compound, Friction tests with a 

BAM friction tester carried out according to STANAG 448732 modified 

instructions33 using approximately 5 mg of the compound, and electrostatic spark 

tests with an ESD 2010 EN, OZM Electric Spark Tester according to STANAG 

451534 instructions using 0.1 mL of the compound performed by Klapötke group. 

 Preparation of Benzene-1,4-bis(carboperoxoic) acid (49). A 100 mL round 

bottomed flask was charged with a magnetic stir bar and terphthaloyl chloride (0.105 g, 

0.517 mmol). Then, methanesulfonic acid (0.4 mL, 5 mmol) was added and the reaction 

mixture was allowed to stir for 5–10 min at 50 °C. Afterwards, hydrogen peroxide 

solution (84 wt.% in H2O, 0.25 mL, 4.0 mmol) was added drop by drop and the reaction 

mixture was stirred for 1 h at 50 °C. The product mixture was cooled to 0 °C in an ice 

bath, and then crushed ice (0.5 g) was added to the reaction mixture. The resultant 

white precipitate was collected by suction filtration and was dried under reduced 

pressure to afford 0.093 g (94%) of 49 as a white solid: mp 165 °C, dec. (explodes); IR 

(ν, cm-1): 3240 (m, broad), 3125 (w), 3107 (w), 3063 (w), 1715 (m), 1504 (w), 1414 (m), 

1393 (m), 1304 (w), 1267 (m), 1250 (m), 1092 (m), 1015 (m), 895 (m), 866 (m), 845 (m), 

714 (s); 1H NMR (400 MHz, (CD3)2NCOD, 23 °C, δ) 14.18 (broad s, 1H, OOH), 8.06 (s, 

4H, CH); 13C{1H} NMR (101 MHz, (CD3)2NCOD, 23 °C, ppm) 164.93 (peroxy C), 132.50 
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(C), 130.04 (CH); Anal. Calcd for C8H6O6: C, 48.49; H, 3.06.  Found: C, 48.10; H, 3.36. 

Colorless needle-like single crystals were grown from DMF at –29 °C.  

 Preparation of Benzene-1,3,5-tris(carboxyloperoxoic) acid (50). A dry 100 

mL Schlenk flask was charged with a magnetic stir bar and benzene-1,3,5-tricarbonyl 

trichloride (0.105 g, 0.396 mmol). Then, methanesulfonic acid (0.5 mL, 6 mmol) was 

added and the reaction mixture was allowed to stir for 5–10 min at 50 °C. Afterwards, 

hydrogen peroxide solution (84 wt.% in H2O, 0.30 mL, 4.8 mmol) was added drop by 

drop and the reaction mixture was stirred for 30 min at 50 °C. The product mixture was 

cooled to 0 °C in an ice bath, and then crushed ice (0.5 g) was added into the reaction 

mixture. The white solid in the reaction mixture was collected by suction filtration and 

was dried under reduced pressure to afford 0.101 g (99%) of 50 as a white solid: mp not 

taken due to explosion hazard; IR (ν, cm–1): 3226 (m, broad), 3087 (m), 1737 (s), 1608 

(w), 1410 (m), 1326 (m), 1278 (m), 1224 (s), 1131 (m), 1115 (m), 1098 (m), 934 (w), 

881 (m), 835 (w), 767 (w), 717 (s); 1H NMR (400 MHz, CD3OD, 23 °C, δ) CO3H not 

observed due to exchange with CD3OD, 8.65 (s, 4H, CH); 13C{1H} NMR (101 MHz, 

CD3OD, 23 °C, ppm) 164.95 (peroxy C), 134.52 (C), 130.51 (CH); Anal. Calcd for 

C9H6O9: C, 41.87; H, 2.35.  Found: C, 41.98; H, 2.36.  

 Preparation of 4-Nitrobenzoperoxoic acid (51). Compound 51 was prepared in 

94% yield as a pale yellow solid by a literature procedure133 starting from 4-nitrobenzoic 

acid: mp 138–140 °C (lit133 139 °C); IR (ν, cm–1): 3308 (broad, m), 3115 (w), 2986 (w), 

1744 (m), 1718 (m), 1609 (m), 1541 (m), 1491 (w), 1414 (m), 1383 (m), 1348 (m), 1321 

(m), 1302 (m), 1258 (m), 1242 (m), 1111 (w), 1074 (m), 1013 (w), 974 (w), 951 (w), 934 

(w), 893 (m), 868 (m), 837 (s), 775 (w), 710 (s); 1H NMR (400 MHz, CDCl3, 23 °C, δ) 
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11.57 (broad s, 1H, OOH), 8.37 (dm, J = 8.4 Hz, 2H, CH), 8.21 (dm, J = 8.8 Hz, 2H, 

CH); 13C{1H} NMR (101 MHz, CDCl3, 23 °C, ppm) 166.33 (peroxy C), 151.45 (C), 

131.55 (C), 130.81 (CH), 124.26 (CH);  Anal. Calcd for C7H5NO5: C, 45.90; H, 2.76; N, 

7.65.  Found: C, 46.37; H, 3.00; N, 7.75.  

 Preparation of 3,5-Dinitrobenzoperoxoic acid (52). Compound 52 was 

prepared in 96% yield as a pale yellow solid by a literature procedure134 starting from 

3,5-dinitrobenzoic acid: mp 113–115 °C (lit134 113–115 °C); IR (ν cm–1): 3447 (broad, 

m), 3088 (m), 2883 (w), 1734 (m), 1717 (m), 1701 (m), 1628 (m), 1597 (w), 1541 (s), 

1489 (w), 1458 (m), 1420 (w), 1348 (s), 1269 (m), 1179 (m), 1152 (s), 1094 (m), 1043 

(m), 916 (m), 881 (w), 781 (m), 764 (w), 714 (s); 1H NMR (400 MHz, CD3OD, 23 °C, δ) 

OOH resonance not observed due to exchange with CD3OD, 9.22 (t, J = 2.4 Hz, 1H, 

CH), 9.03 (d, J = 2.4 Hz, 2H, CH); 13C{1H} NMR (101 MHz, CD3OD, 23 °C, ppm) 163.62 

(peroxy C), 150.17 (C), 131.98 (C), 129.73 (CH), 123.83 (CH); Anal. Calcd for 

C7H4N2O7: C, 36.86; H, 1.77; N, 12.27.  Found: C, 36.89; H, 1.90; N, 11.95. Colorless, 

thin, needle-like single crystals were grown from 1:1 diethyl ether:pentane at –29 °C. 
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CHAPTER 7 

Conclusions and Future Directions 

 The design of highly energetic and low sensitivity HEDMs is an extremely 

challenging process since the molecules tend to be unstable and sensitive to stimuli 

with higher energy contents. However, many highly energetic inorganic, organic, and 

polymeric HEDMs have been synthesized with appropriate sensitivities for the safe use 

as primary, secondary, and tertiary HEDMs. The field of organic HEDMs is dominated 

by compounds with high nitrogen contents, due to the ability of increasing the energy 

content without excessively increasing the sensitivities to stimuli. They are mainly 

nitrogen rich heterocycles or nitro compounds. The highest detonation velocity obtained 

for the organic HEDMs is 10,100 m/s for octanitrocubane (ONC).1e,6b There is still a 

constant effort to obtain low sensitivity HEDMs with high detonation velocities.  

 The other main aspect of HEDM design is the synthesis of compounds with 

environmentally friendly decomposition products. Primary explosives LA, LS, and MF 

contain heavy metals such as lead and mercury that cause heavy metal poisoning. The 

tertiary explosive NH4ClO4 has been widely used in propellant and explosive 

formulations. Leaching of NH4ClO4 into groundwater has resulted in accumulation of it 

causing groundwater plumes. Hence, people have been exposed to ClO4– ions. The 

ClO4– ion is similar in size to the iodide ion, which causes a competition in the thyroid 

gland. This could lead to disruptions of metabolic pathways and even thyroid cancer. 

Many research efforts are currently being carried out to find replacements for the toxic 

primary explosives and NH4ClO4 with only a little success.  
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 Peroxo-based oxygen-rich compounds can be proposed as a potential new class 

of greener HEDMs due to the more environmentally friendly decomposition products 

CO2 and/or CO, H2O, and O2. These peroxo-based compounds have been studied as a 

strategy to increase the oxygen contents in the design of HEDMs.  However, increasing 

the oxygen contents with the peroxo-based compounds gained only a limited interest 

due to their extremely high sensitivities, low thermal and chemical stabilities, and low 

detonation velocities. Currently, TATP, DADP, MEKP, and HMTD are the only well-

studied energetic peroxides. These peroxo-based compounds have not found any 

practical applications as civilian or military HEDMs due to their extreme sensitivities. 

Unfortunately, due to the ease of synthesis and wide availability of the starting materials 

TATP, DADP, MEKP, and HMTD have been used in multiple terrorist attacks. 

 For practical use as HEDMs, the extremely high impact and friction sensitivities 

of peroxo-based compounds need to be reduced. Also, new peroxo-based compounds 

with better detonation velocities, high thermal stabilities, and more chemical 

compatibilities need to be discovered. The peroxo-based compounds also need to be 

systematically studied to discover the highest possible oxygen contents that can be 

safely incorporated, their sensitivities and energetic properties, and paths to gear 

towards safer less sensitive peroxo-based compounds.  This study also allows ensuring 

safety in numerous current applications of peroxo-based compounds by educating the 

industrial community about their sensitivities and energetic properties. Also, a wealth of 

fundamental information can be obtained about the structures and energetic properties 

of peroxo-based compounds for further development of peroxo-based HEDMs.  
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 We have chosen four categories of peroxo-based compounds: tert-butyl 

peroxides, tert-butyl peroxy esters, hydroperoxides, and peroxy acids to study the 

sensitivities and energetic properties systematically for their potential use as greener 

HEDMs. Initially, more carbon rich tert-butyl peroxides and tert-butyl peroxy esters and 

then, more oxygen rich hydroperoxides and peroxy acids were synthesized and fully 

characterized. Preliminary sensitivity tests (flame, hammer impact, sand paper friction, 

and Tesla coil electrostatic discharge tests) were carried out to select the most sensitive 

and energetic compounds. The standard sensitivities and energetic properties of the 

selected highly energetic compounds were further studied in collaboration with Prof. 

Thomas M. Klapötke, Ludwig-Maximilians University, Munich, Germany. Standard 

impact, friction, and electrostatic discharge sensitivities of the more energetic peroxo-

based compounds were studied with a BAM drop hammer, BAM friction tester, and an 

electrostatic spark sensitivity tester using standard experimental methods.29–34 The 

influence of solid state interactions on the impact and friction sensitivities of peroxo-

based compounds was analyzed to gain insights about controlling the solid state 

structural features to reduce their high sensitivities for safer practical applications. The 

energetic properties of the peroxo-based compounds with varying oxygen contents, 

crystalline densities, and ring and steric strain energies were obtained by theoretical 

calculations using the Explo5 V6.02 software.114 

 tert-Butyl peroxides 1–15 were synthesized in low to moderate yields and were 

fully characterized. X-ray crystal structures were obtained for 1, 3, 5, 8, 11, 13, and 15. 

Their crystalline densities are in the range of 1.098–1.166 g/cm3, which are too low for 

HEDM applications. tert-Butyl peroxides 1–15 are fairly thermally stable compounds 
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with decomposition temperatures in the range of 110–140 °C. Compounds 1–15 only 

deflagrated upon burning. They were not sensitive to impact, friction, or electrostatic 

spark according to the preliminary sensitivity tests. Only slight differences in the 

sensitivities and energetic properties were observed with the increasing oxygen content 

or ring strain.  Hence, 1–15 can be described as low energetic and fairly safe peroxo-

based compounds to handle. Thus, no standard energetic materials properties were 

obtained for tert-butyl peroxides 1–15.  

 tert-Butyl peroxy esters 16–22 were synthesized in moderate to high yields and 

were all completely characterized along with X-ray crystal structures. Their crystalline 

densities are in the range of 1.161–1.487 g/cm3, which are higher than tert-butyl 

peroxides, but are still low for HEDM applications. Except for 20, the rest of the tert-

butyl peroxy esters are fairly thermally stable compounds with the decomposition 

temperatures in the range of 86–123 °C. The heats of formation values of 16–22 are all 

negative, which indicates that they are fairly stable organic compounds. Nitro-

substituted aromatic tert-butyl peroxy esters 21 and 22 have the more positive 

heats of formation values and thus, higher energy contents. The aromatic tert-butyl 

peroxy esters 16–18, 21, and 22 have much lower impact and friction sensitivities 

with respect to the peroxo-based explosives TATP, DADP, MEKP, and HMTD. 

There are numerous intermolecular interactions that involve the oxygen atoms of 

the peroxy ester groups, which could assist in reducing the impact and friction 

sensitivities of 16–18, 21, and 22. Since there are weak O–O bonds that are not 

involved in any intermolecular contacts in the crystal structure of 19, it was 

relatively high in sensitivity. Large voids in the crystal structure of the non-
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aromatic tert-butyl peroxy ester 20 might have caused its high sensitivity. 

Compounds 16–22 were all surprisingly highly energetic despite the low oxygen and 

nitrogen contents. This highly energetic nature could be a result of the high O:C ratios 

(0.75–3.00) in the central cores of 16–22. The calculated detonation velocities of 20–

22 (5361–6003 m/s) are greater than the detonation velocities of TATP, DADP, 

MEKP, and HMTD (4,511–5,300 m/s).6b,35 The highest detonation velocities were 

obtained for the nitro-substituted aromatic tert-butyl peroxy esters 21 and 22 due 

to the high crystalline densities. With their very low impact and friction 

sensitivities, they could be useful as secondary explosives. Compounds 21 and 

22 are among the first highly energetic and low sensitivity peroxo-based 

compounds that can be categorized as secondary HEDMs. Through this work, 

we have obtained surprisingly highly energetic and low sensitivity tert-butyl 

peroxy esters with relatively low oxygen and nitrogen contents for potential use 

as HEDMs. 

 Geminal hydroperoxides 23–38 were synthesized in moderate to high yields 

and were fully characterized. These are more oxygen rich peroxo-based compounds 

and the O:C ratios are in the range of 0.40–1.33. Compounds with higher peroxy 

oxygen contents were not feasible with the mild synthetic method employed. X-ray 

crystal structures were obtained for the geminal hydroperoxides 24, 26, 27, 29, 30, 34, 

and 36 and the crystalline densities are in the range of 1.266–1.648 g/cm3. These 

crystalline densities are higher than the tert-butyl peroxides and tert-butyl peroxy esters. 

Compounds 24–31 and 34–38 were fairly thermally stable geminal hydroperoxides and 

their decomposition temperatures are in the range of 90–130 °C. The heats of formation 



www.manaraa.com

236 
 

 

values of 34–36 and 38 are all negative, which indicates that they are stable organic 

compounds. Compound 36 was the geminal hydroperoxide with the most positive heat 

of formation and thus, it is the geminal hydroperoxide with the highest energy content. 

The sensitivities and the energetic properties increase with the increasing oxygen 

contents and ring strain based on the preliminary sensitivity tests. According to the 

standard sensitivity tests, the impact and friction sensitivities of 34–36 and 38 are high, 

and they can be categorized as primary explosives. However, the sensitivities of 34–36 

are less than the known peroxo-based explosives TATP, DADP, MEKP, and HMTD. 

This could be due to the involvement of the weak O–O bonds of 34–36 in numerous 

stabilizing intermolecular interactions including O–H···O hydrogen bonds and O···O 

contacts. These sensitivities of 34–36 are practically useful, although they are 

higher than the optimum sensitivities for primary explosives. Compound 38 has the 

highest O:C ratio (1.33), and has impact and friction sensitivities comparable to TATP, 

DADP, MEKP, and HMTD (Tables 3–6). This indicates that when the peroxy O:C 

ratio is above 1.00, sensitivity becomes high regardless of the stabilizing intermolecular 

short contacts. Thus, the maximum peroxy O:C ratio that could be safe to handle is 

about 1.00. Compounds 34–36 and 38 were the most energetic compounds and their 

detonation velocities are in the range of 6150–7130 m/s. These calculated detonation 

velocities are greater than the detonation velocities of TATP, DADP, MEKP, and 

HMTD (4,511–5,300 m/s).6b,35 The highest detonation velocity was obtained for 36, 

which has the highest crystalline density. The detonation velocity of 36 (7130 m/s) is 

greater than the secondary explosive TNT (6900 m/s).11b According to this work, we 



www.manaraa.com

237 
 

 

have learned that through careful manipulation of organic peroxide structures, 

compounds with highly useful energetic materials properties can be obtained. 

 The series of oxygen-rich cyclic dihydroperoxy compounds 39–43 and 

hydroperoxy compounds 44–48 were synthesized and fully characterized with the X-ray 

crystal structures obtained for all the solid compounds 39–43 and 45–48. Their 

crystalline densities are in the range of 1.328–1.474 g/cm3. Except for 40 and 45, the 

rest of the cyclic hydroperoxy compounds are fairly thermally stable. Their 

decomposition temperatures are in the range of 82–133 °C. The heats of formation 

values are all negative, which indicates that they are fairly stable organic compounds. 

More positive heats of formation values were obtained for the dihydroperoxy 

compounds 39–43 than the hydroperoxy compounds 44–48. All of the cyclic 

dihydroperoxy compounds 39–43 were highly sensitive to impact and friction similar to 

the peroxo-based explosives TATP, DADP, MEKP, and HMTD regardless of the 

stabilizing intermolecular interactions including O–H···O and C–H···O hydrogen bonds 

and multiple short contacts. The higher O:C ratios (0.86–1.00) of 39–43 than TATP and 

DADP might have caused these high impact and friction sensitivities of 39–43. The 

extremely high sensitivities of 40 can be attributed to the high angle and torsional strain 

and arrangement of the molecules as hydrogen bonded pairs that create more voids in 

the crystalline lattice. The hydroperoxy compounds 45–48 with one less O–O trigger 

bond than the corresponding dihydroperoxy compounds were less sensitive than 39–43. 

All of the dihydroperoxy compounds 39–43 have impressive calculated detonation 

velocities in the range of 6350–6694 m/s. However, their extremely high sensitivities 

render them unsafe for HEDM applications. Interestingly, the hydroperoxy compounds 
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45–48 also have high detonation performances in the range of 6100–6461 m/s even 

with the slightly lower oxygen contents. The detonation velocities were higher with 

higher crystalline densities and higher oxygen contents. Thus, compounds 43 and 48 

were the most energetic from the cyclic dihydroperoxy and hydroperoxy compounds, 

respectively. Except for 45 with a low thermal stability, 46–48 with high detonation 

performances and low impact and friction sensitivities are attractive candidates for use 

as primary HEDMs. We observed that the ring strain was useful in increasing the 

detonation velocities, since it led to compounds with higher crystalline densities. 

However, increasing the steric strain using bulky groups led to lower crystalline 

densities and lower detonation velocities. Additionally, increasing the steric strain not 

only increased the sensitivity of 40 and 45 but also reduced their thermal stabilities. 

According to this work with cyclic dihydroperoxy compounds 39–43 and hydroperoxy 

compounds 44–48, we have demonstrated that sensitivities and energetic performances 

of peroxo-based compounds could be tuned by careful structural manipulations of 

peroxo-based compounds.  

 We have synthesized oxygen-rich peroxy acids 49–52 in high yields with 

minimum synthetic manipulations and they were fully characterized for potential use as 

HEDMs. The X-ray crystal structures of 49 and 52 were obtained and the crystalline 

densities are in the range of 1.423–1.748 g/cm3. Compound 52 provided the highest 

crystalline density (1.748 g/cm3) of all the peroxo-based compounds in our study. 

Compound 53 with high oxygen and nitrogen contents and an estimated crystalline 

density of 1.8 g/cm3 at 298 K could be a highly impressive candidate for HEDM 

applications, although it cannot be synthesized in our laboratory. The decomposition 
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temperatures of peroxy acids 49–52 are in the range of 132–167 °C and they are more 

thermally stable than the other categories of peroxo-based compounds studied. The 

peroxy acids 49, 51, and 52 have lower impact and friction sensitivities than all of the 

other peroxo-based subclasses studied and the known peroxo-based explosives TATP, 

DADP, HMTD, and MEKP. Compound 50, with three peroxy acid groups and an O:C 

ratio of 1.00, was highly sensitive. Based on the crystal structure of 52, there is no 

layered arrangement of molecules to provide slip planes to dissipate energy upon 

initiation by stimuli. Thus, the low sensitivity of 52 can be attributed to the stabilization of 

the weak O–O bonds in the crystalline lattice by O–H···O hydrogen bonds and O···O 

short contacts. The weakly interacting network of stabilizing intermolecular interactions 

might be providing an alternative mean to dissipate energy without breaking covalent 

bonds. The detonation velocity of 52 (7217 m/s) is the highest detonation velocity 

obtained for the peroxo-based compounds synthesized in our study. The calculated 

detonation velocity of 53 (7885 m/s) is close to the detonation velocity of the secondary 

high explosive RDX (8750 m/s).6b The low sensitivities and high detonation velocities of 

49, 51, and 52 are appropriate for applications as secondary HEDMs. These peroxy 

acids 49, 51, and 52 are the first peroxo-based oxygen-rich compounds that are useful 

as secondary HEDMs. Through this work, we have obtained highly attractive peroxy 

acids with high detonation performances and surprisingly low sensitivities for potential 

use as HEDMs. The ease of synthesis in high yields with minimum synthetic 

manipulations, storability, and high thermal stabilities are all advantageous properties of 

peroxy acids for their use as HEDMs. This work also suggests that the peroxy acid 

functional group can be effectively used in the design of HEDMs to increase the oxygen 



www.manaraa.com

240 
 

 

contents and thus, the energetic performances without excessively increasing the 

impact and friction sensitivities. 

 Based on the studies with tert-butyl peroxy esters, geminal hydroperoxides, 

cyclic hydroperoxy compounds, and peroxy acids we have learned invaluable ways to 

reduce the extremely high sensitivities of peroxo-based compounds while increasing 

their detonation velocities. They are the use of peroxy acid or hydroxy groups to 

increase the oxygen content, use of nitro groups to increase both the nitrogen and 

oxygen contents, and limiting the peroxy O:C ratio to 1.00. Using these strategies, more 

energetic and lower sensitivity peroxo-based compounds can be synthesized as future 

HEDMs.  

 Although we attempted to rationalize the physical behavior of peroxo-based 

compounds upon initiation by impact and friction stimuli based on the solid state 

intermolecular interactions, more theoretical studies are required to understand more 

about these complex phenomena. As recently suggested by Landenberger,68 

cocrystallization could be used as a novel method to use these solid state 

characteristics of peroxo-based compounds to reduce their sensitivities and improve the 

detonation velocities. Future peroxo-based HEDM design should aim to have large 

conjugated π-systems assisted by hydrogen bonding and face-to-face π-π interactions 

to create slip planes for low sensitivity HEDMs.  

 Another important issue for peroxo-based compounds is to increase their thermal 

stabilities. Based on our study, peroxy acids were the most thermally stable category of 

peroxo-based compounds. However, to reach decomposition temperatures above 150 

°C, more research needs to be carried out. The energetic properties and thermal 
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stabilities of peroxo-based compounds need to be improved further to replace the 

hazardous tertiary explosive NH4ClO4 and primary explosives LA, LS, and MF. 

 Through this research, a wealth of information about the sensitivities and 

energetic materials properties of a large family of peroxo-based compounds was 

gathered to fill the void in the field of peroxo-based HEDMs. We were able to reach 

beyond the boundaries set by TATP, DADP, MEKP, and HMTD both with regards to 

sensitivities and energy content. We have discovered many attractive highly energetic 

and low sensitivity peroxo-based compounds that are much more impressive in the 

overall performance than the known peroxo-based explosives TATP, DADP, MEKP, 

and HMTD for the potential use as greener HEDMs.  
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ABSTRACT 

SYNTHESIS, CHARACTERIZATION, AND PROPERTIES OF PEROXO-BASED 
OXYGEN-RICH COMPOUNDS FOR POTENTIAL USE AS GREENER HIGH ENERGY 

DENSITY MATERIALS 

by 

NIPUNI-DHANESHA HORADUGODA GAMAGE 

December 2015 

Advisor: Professor Charles H. Winter 

Major: Chemistry (Inorganic) 

Degree: Doctor of Philosophy 

One main aspect of high energy density material (HEDM) design is to obtain 

greener alternatives for HEDMs that produce toxic byproducts. Primary explosives lead 

azide, lead styphnate, and mercury fulminate contain heavy metals that cause heavy 

metal poisoning. Leaching of the widely used tertiary explosive NH4ClO4 into 

groundwater has resulted in human exposure to ClO4– ions, which cause disruptions of 

thyroid related metabolic pathways and even thyroid cancer. Many research efforts to 

find replacements have gained little success. Thus, there is a need for greener HEDMs. 

Peroxo-based oxygen-rich compounds are proposed as a potential new class of 

greener HEDMs due to the evolution of CO2 and/or CO, H2O, and O2 as the main 

decomposition products. Currently, triacetone triperoxide (TATP), diacetone diperoxide 

(DADP), hexamethylene triperoxide diamine (HMTD), and methyl ethyl ketone peroxide 

(MEKP) are the only well-studied highly energetic peroxides. However, due to their high 

impact and friction sensitivities, low thermal stabilities, and low detonation velocities 

they have not found any civil or military HEDM applications.  
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 In this dissertation research, we have synthesized and fully characterized four 

categories of peroxo-based compounds: tert-butyl peroxides, tert-butyl peroxy esters, 

hydroperoxides, and peroxy acids to perform a systematic study of their sensitivities and 

the energetic properties for potential use as greener HEDMs.  

 tert-Butyl peroxides were not sensitive to impact, friction, or electrostatic spark. 

Hence, tert-butyl peroxides can be described as fairly safe peroxo-based compounds to 

handle. tert-Butyl peroxy esters were all surprisingly energetic (4896–6003 m/s), despite 

the low oxygen and nitrogen contents. Aromatic tert-butyl peroxy esters were much 

lower in impact and friction sensitivities with respect to the known peroxo-based 

explosives. These are among the first low sensitivity peroxo-based compounds 

that can be categorized as secondary HEDMs. 

 Oxygen-rich (0.80–1.00) geminal hydroperoxides have detonation velocities in 

the range of 6150–7130 m/s. These impressive detonation velocities are greater than 

the detonation velocities of the known peroxo-based explosives. The highest 

detonation velocity (7130 m/s) was obtained for 1,4-bis(dihydroperoxymethyl)benzene, 

which has the highest crystalline density (1.648 g/cm3). This detonation velocity is 

greater than the secondary explosive 2,4,6-trinitrotoluene (TNT). The sensitivities of 

these oxygen-rich geminal hydroperoxides are lower than the known peroxo-based 

explosives due to the O–H···O hydrogen bonds and O···O contacts, which stabilize the 

weak O–O bonds in the crystalline lattice. They could be useful as primary HEDMs. 

 Dihydroperoxy dioxane and dioxolanes have impressive detonation velocities in 

the range of 6350–6694 m/s. However, their extremely high sensitivities render them 

unsafe for HEDM applications. Interestingly, hydroperoxy dioxanol and dioxolanols also 
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have high detonation velocities in the range of 6100–6461 m/s even with the lower 

oxygen contents. The hydroperoxy compounds with one less O–O bond were much less 

sensitive than the dihydroperoxy compounds. These hydroperoxy compounds could be 

useful as primary HEDMs. We observed that the ring strain was useful in increasing the 

detonation velocities, since it led to compounds with higher crystalline densities. 

However, increasing the steric strain using bulky groups led to lower crystalline 

densities and lower detonation velocities. Higher steric strain not only resulted in higher 

sensitivities but also lower thermal stabilities.  

 Peroxy acids have high detonation velocities in the range of 5262–7885 m/s. The 

detonation velocity of 3,5-dinitrobenzoperoxoic acid (7217 m/s) was the highest 

detonation velocity obtained for the peroxo-based compounds synthesized in our study, 

which is greater than the detonation velocity of TNT. The detonation velocity of 2,4,6-

trinitrobenzoperoxoic acid (7885 m/s) is close to the detonation velocity of the 

secondary high explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Peroxy acids have 

surprisingly low impact and friction sensitivities that are well below the known peroxo-

based explosives TATP, DADP, HMTD, and MEKP. Based on the crystal structure of 

3,5-dinitrobenzoperoxoic acid, the low sensitivities can be attributed to the stabilization 

of the weak O–O bonds in the crystalline lattice by O–H···O hydrogen bonds and O···O 

short contacts. These are the first peroxo-based oxygen-rich compounds that can be 

useful as secondary HEDMs. The ease of synthesis in high yields with minimum 

synthetic manipulations, storability, and high thermal stabilities are all advantageous 

properties of peroxy acids for their use as HEDMs.  
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 Through this work, we have gained a wealth of fundamental information about 

the structures and energetic materials properties of a large family of peroxo-based 

compounds. Solid state intermolecular interactions were useful to understand the 

impact and friction sensitivities. The safe peroxy O:C ratio was found to be 

approximately 1.00. However, the oxygen contents could be further increased with more 

stable nitro and hydroxy groups. Highly attractive low sensitivity peroxo-based 

compounds were obtained with impressive detonation performances for potential use as 

greener primary and secondary HEDMs.  
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